OSIP: Assessing pseudo-hermeticity on COTS with plastic encapsulated materials

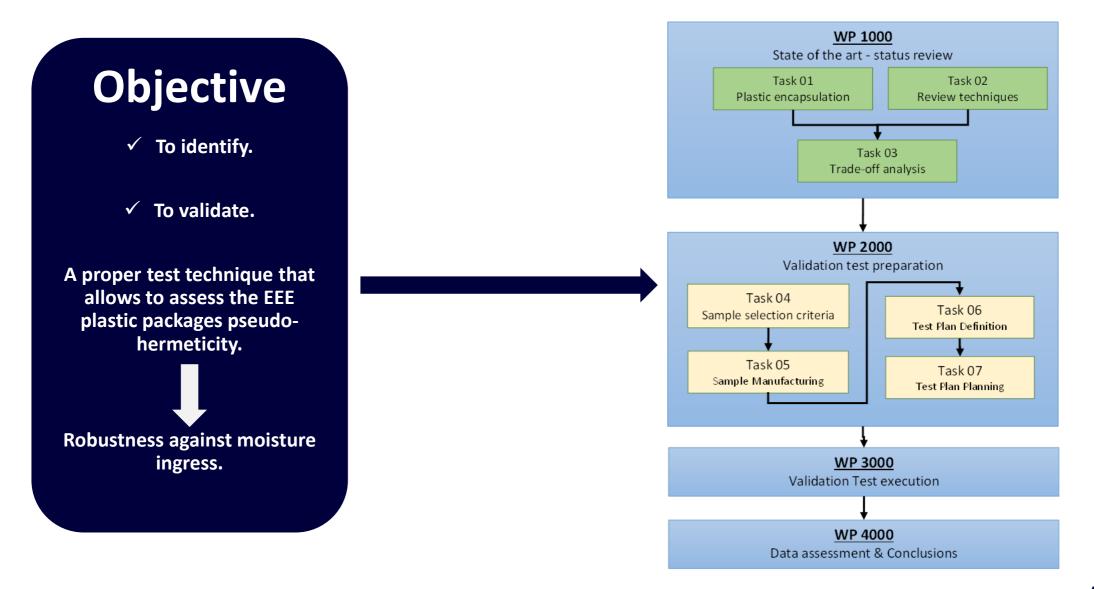
ESA Contract 4000135494/21/NL/GLC/ov

UK TÜV NORD GROUP

Luis Arriaga, Head of SAM and TMA (ALTER SP) Gonzalo Fernandez (ALTER SP) Derek Fraser (ALTER UK) Szymon Bernardsky (ALTER UK) Francisco Javier Aparicio (CSIC-ICMS) Angel Barranco (CSIC-ICMS) **ALTER**

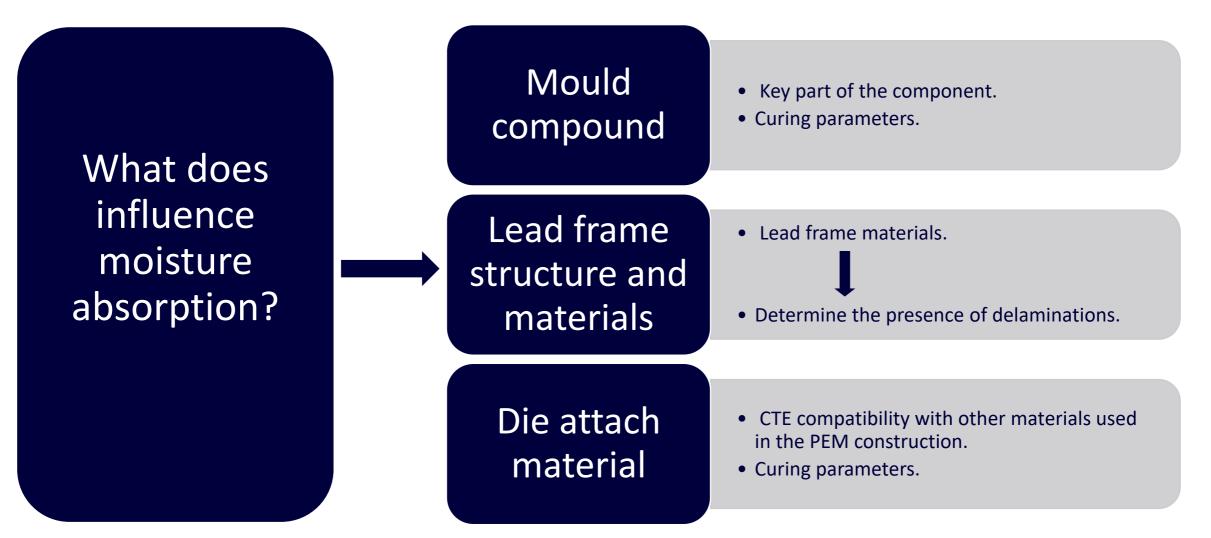
SP TÜV NORD GROUP

ESCCON 2023 The European Space Components Conference 7 - 9 March 2023 | Toulouse | France



Assessing pseudo-hermeticity on COTS

Outline


- Introduction, objective and work packages
- Tasks description:
 - Task 01: Investigate device plastic packaging construction (WP1000)
 - Task 02: Test techniques study (WP1000)
 - Task 03: Test technique trade-off (WP1000)
 - Task 04: Test sample selection criteria (WP2000)
 - Task 05: Test samples manufacturing (WP2000)
 - Task 06: Test plan design (WP2000)
- Preliminary results
- Gathered data summary and future work

Introduction, objective and work packages

∧LTER

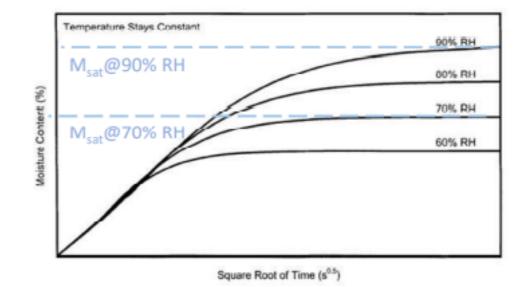
Task 01: Investigate device plastic packaging construction

OSIP: Assessing pseudo-hermeticity on COTS with plastic encapsulated materials / ESA Contract 4000135494/21/NL/GLC/ov.

∧LTER

Task 01: Investigate device plastic packaging construction

Optimum materials/process parameters

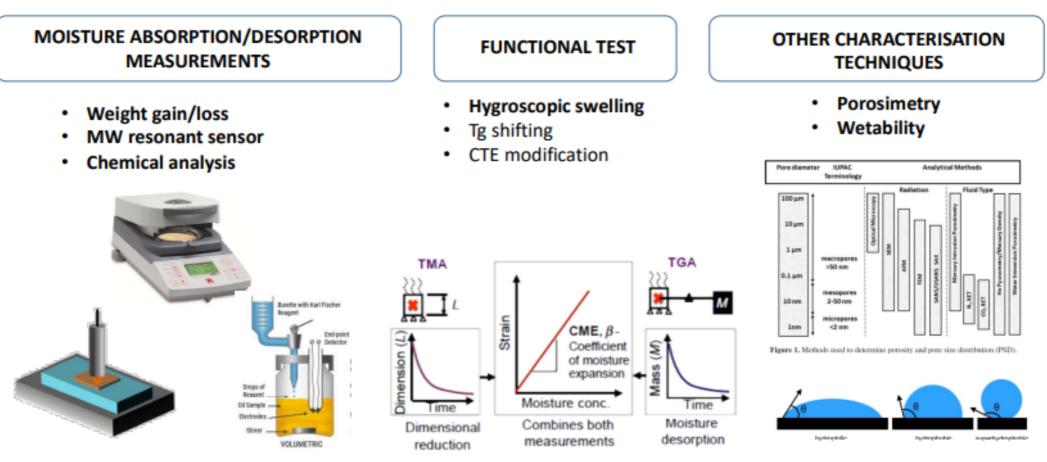

	Materials								
		Key Specifications	Unit	Capling GR900C Q1L4E					
		Filler Content	%	86.5					
		Gel Time@175°C	seconds	39					
		тg	*C	120					
	CTE Below Tg	PPM/*C	11						
Mould compound	Mould compound • Capling GR900C Q1L4E	CTE Above Tg	PPM/*C	37					
Modia compound		Ionic Content NA+	PPM	3					
		Ionic Content CL-	PPM	8					
		Moisture Absorption 24 Hrs.	%	0.22					
		Flexural Strength@RT	N/mm²	150					
		Flexure Modulus@RT	N/mm²	19000					
Lead frame	 Base material: Cu Alloy 194 Fu Plating: ENEPIG Ni:20-80µ"Pd: Selective plating with Cu Enha 	0.8-6.0µ"Au:).6µ"					
Таре	TapeNitto6250L Silicon adhesive.								

	pound transfer meters
Clamp force	• 150 kN
Moulding temperature	• 175 °C
Mould pressure	• 9 MPa
Transfer time	• 90 s
Post cure time	• 6 h
Post cure temperature	• 175 °C

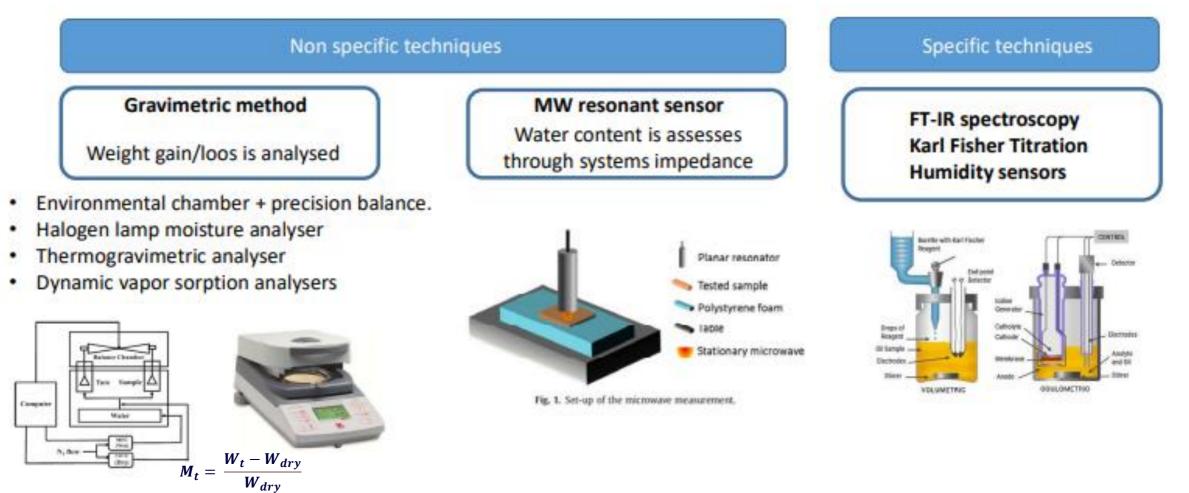
Task 02: Test techniques study

- Introduction
- Moisture ingress in plastic materials: It is a type of absorption process whereby surface-adsorbed water molecules are disolved or permeate into the solid plastic.
- Key parameters related to moisture absorption:
- Moisture concentration:
- $M_t = \frac{W_t W_{dry}}{W_{dry}}$
- Moisture saturation concentration:

M_{sat}



Task 02: Test techniques study

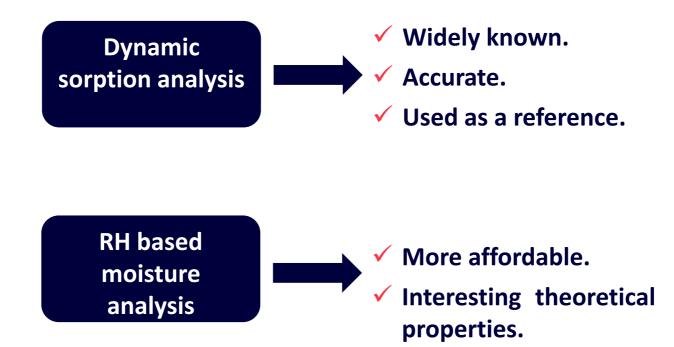

Introduction

7

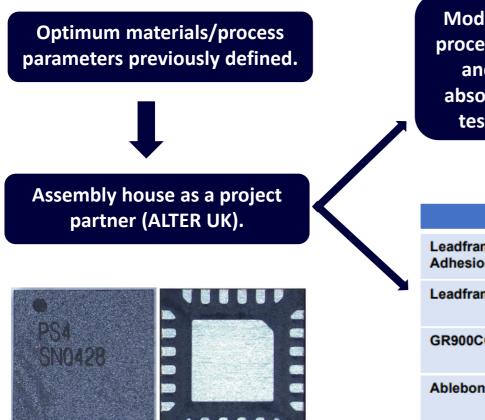
Task 02: Test techniques study

Introduction

Task 03: Test technique trade-off


Qualitative pros and cons of the different techniques analyzed

Technique	Test method	Absorption / desorption	Readability ¹ (% wt)	In situ / real time monitoring	Sample size	Availability	Price
Environmental chamber + precision balance		Both					300-30K€
Moisture analyser							10K€
Thermogravimetric analysis							> 50K€
Dynamic Sorption Analysis		Both			12-14 mm of diameter		65 K€
Karl Fisher							15 K€
RH based moisture analysers							20 K€
MW resonant moisture sensing		Both					
FT-IR		Both					>150 k€

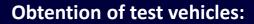

9 OSIP: Assessing pseudo-hermeticity on COTS with plastic encapsulated materials / ESA Contract 4000135494/21/NL/GLC/ov.

Task 03: Test technique trade-off

Qualitative pros and cons of the different techniques analyzed

Task 04: Test sample selection criteria

Modify the manufacturing process to promote deffects and increase moisture absorption in the selected test vehicles: QFN 4X4.


Material

Leadframe 4x4 Selective Plating with Cu Adhesion Enhancement (AE)

Leadframe 4x4 Fully Plated

GR900CQ1L4E Black Epoxy Mould

Ablebond 84-1LMISR4 Epoxy

✓ With several moisture sensitive levels.

✓ Exhibing typical manufacturing deffects.

 ✓ Exhibing typical degradation postenviromental tests.

 ✓ That are representative of other devices found in the market.

Task 05: Test samples manufacturing

Equipment	Process Step	Sample 1 (golden)	Sample 2	Sample 3	Sample 4
LF number		PS1	PS2	PS3	PS4
Serial Numbe	r	1-120	121-240	241-360	361-480
Leadframe Pl	ating type	Selective with AE	Selective with AE	Selective with AE	Fully Plated
Dispenser & Convection Oven	Epoxy Dispense & Oven Cure	Time/Temp: 90 mins@175°C Loctite 84-1	Time/Temp: 60 mins@150°C Loctite 84-1	Time/Temp: 90 mins@175°C Loctite 84-1	Time/Temp: 90 mins@175°C Loctite 84-1
Fico MMSI	Mould ENCAP	Time/Temp: 90s@175°C Pressure: 9MPa Force: 150kN EMC Pellets in sealed bag thaw @RT for 2-3hours GR900C	Time/Temp: 90s@175°C Pressure: 9MPa Force: 150kN EMC Pellets in sealed bag thaw @RT for 2- 3hours GR900C	Time/Temp: 90s@175°C Pressure: 9MPa Force: 150kN EMC Pellets in sealed bag thaw @RT for 2- 3hours GR900C	Time/Temp: 90s@175°C Pressure: 9MPa Force: 150kN EMC Pellets in sealed bag thaw @RT for 2- 3hours GR900C
Convection Oven	Mould ENCAP Post Cure	Time/Temp: 6 Hours@175°C Force: 1Kg	Time/Temp: 6 Hours@175°C Force: 1Kg	Time/Temp: 2 Hours@150°C Force: 1Kg	Time/Temp: 6 Hours@175°C Force: 1Kg

12 OSIP: Assessing pseudo-hermeticity on COTS with plastic encapsulated materials / ESA Contract 4000135494/21/NL/GLC/ov.

Objectives and test blocks

- To assess the performance of the two selected test techniques, including sensitivity, industrial process, benefits and drawbacks.
- Investigate how and where this kind of test could be allocated within the classical validation test sequences used at EEE level, considering the different test usage: as part of the device screening, evaluation test, etc.

Test plan

✓ **1st test group:** Initial status of the samples.

Samples	Manufacturing modification
Sample 1 golden type	None
Sample type 2	Less time & curing temperature (60 min & 150 °C)
Sample type 3	Less time & post-curing temperature (2 h & 150 °C)
Sample type 4	Fully plated

		Sample 1	Sample		Sample			Sample			
		Golden	t	ype	2	t	ype	3	type 4		
Step	Test	Q0	Q1	Q2	Q3	Q1	Q2	Q3	Q1	Q2	Q 3
1	1st test group	3	3	3	3	3	3	3	3	3	3
1.1	External visual inspection	3	3	3	3	3	3	3	3	3	3
1.2	Dimensions check	3	3	3	3	з	3	3	3	3	3
1.3	Weight measurements	3	3	3	3	з	3	3	3	3	3
1.4	X-ray	3	3	3	3	3	3	3	3	3	3
1.5	SAM inspection	3	3	3	3	3	3	3	3	3	3
1.6	Low pressure SEM	1	1			1			1		

Test plan

Samples	Manufacturing modification
Sample 1 golden type	None
Sample type 2	Less time & curing temperature (60 min & 150 °C)
Sample type 3	Less time & post-curing temperature (2 h & 150 °C)
Sample type 4	Fully plated

✓ 2nd test group: Environmental stresses \rightarrow Different degradation levels \rightarrow Different moisture ingress levels.

		Sample 1	Sample Sample		Sample						
		Golden	ty	ype	2	t	ype	3	type 4		
Step	Test	Q0	Q1	Q 2	Q 3	Q1	Q2	Q3	Q1	Q2	Q 3
2	2nd test group	3	3	3	3	3	3	3	3	3	3
2.1	No stress tests	3	3			3			3		
2.2	TC (-55 to +125 ºC / 100 cycles)			3			3			3	
2.3	RH (250 h / 85ºC / 85% RH)				3			3			3
2.4	TS (-55 ºC to 125 ºC / 25 cycles)				3			3			3
2.5	RH (250 h / 85ºC / 85% RH)				3			3			3
2.6	TS (-55 ºC to 125 ºC / 25 cycles)				3			3			3
2.7	Baking (24 h/ 125 ºC)	3	3	3	3	3	3	3	3	3	3

Test plan

Samples	Manufacturing modification
Sample 1 golden type	None
Sample type 2	Less time & curing temperature (60 min & 150 °C)
Sample type 3	Less time & post-curing temperature (2 h & 150 °C)
Sample type 4	Fully plated

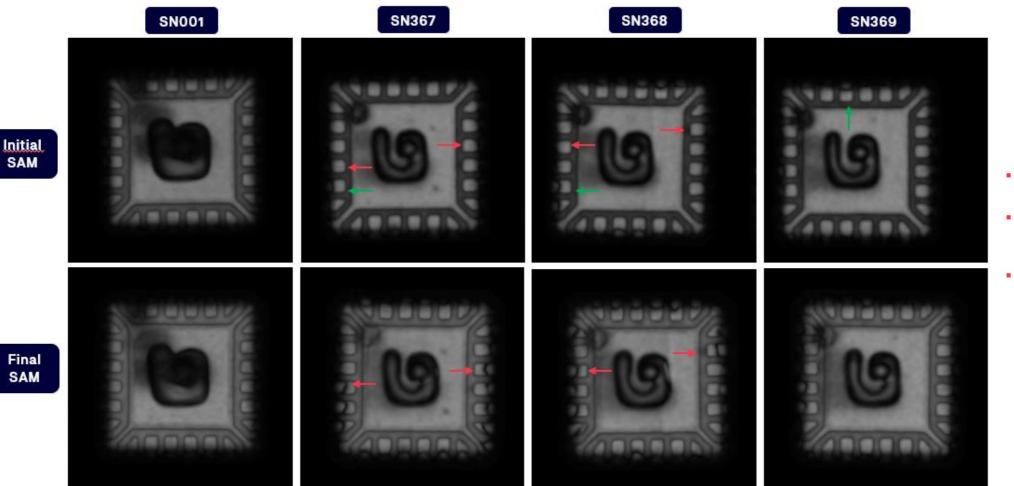
✓ **3rd test group:** Moisture sorption measurements (previously selected techniques).

		Sample 1	Sample			Sample			Sample		
		Golden	type 2 type 3			3	type 4				
Step	Test	Q0	Q1 Q2 Q3			Q1 Q2 Q3		Q3	Q1 Q2 Q3		Q 3
3	3rd test group	3	3	3	3	3	3	3	3	3	3
3.1	Dynamic sorption analysis	3	3	3	3	3	3	3	3	3	3
3.2	RH based moisture analysis	3	3	3	3	3	3	3	3	3	3

Test plan

Samples	Manufacturing modification
Sample 1 golden type	None
Sample type 2	Less time & curing temperature (60 min & 150 °C)
Sample type 3	Less time & post-curing temperature (2 h & 150 °C)
Sample type 4	Fully plated

 \checkmark 4th test group: Final samples status \rightarrow Correlation with the moisture sorption measurements.


		Sample 1	Sample			Sa	amp	le	Sample		
		Golden	type 2 type 3			type 4					
Step	Test	Q0	Q1 Q2 Q3			Q1	Q 2	Q3	Q1	Q 2	Q 3
4	4th test group	3	3	3	3	3	3	3	3	3	3
4.1	External visual inspection	3	3	3	3	з	3	3	3	3	3
4.2	SAM inspection	3	3	3	3	з	3	3	3	3	3
4.3	Cross section	3	3	3	3	з	3	3	3	3	3
4.4	SEM inspection	3	3	3	3	3	3	3	3	3	3

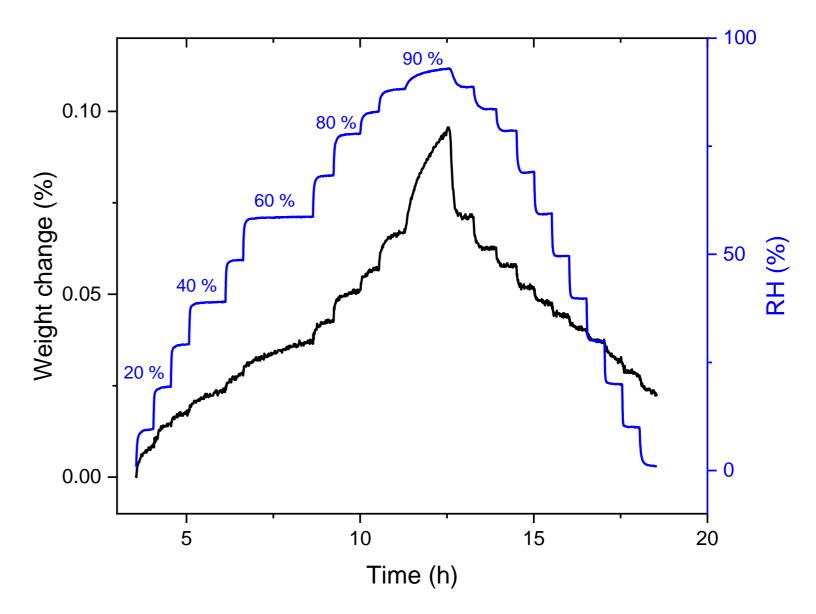
Preliminary results

SAM results

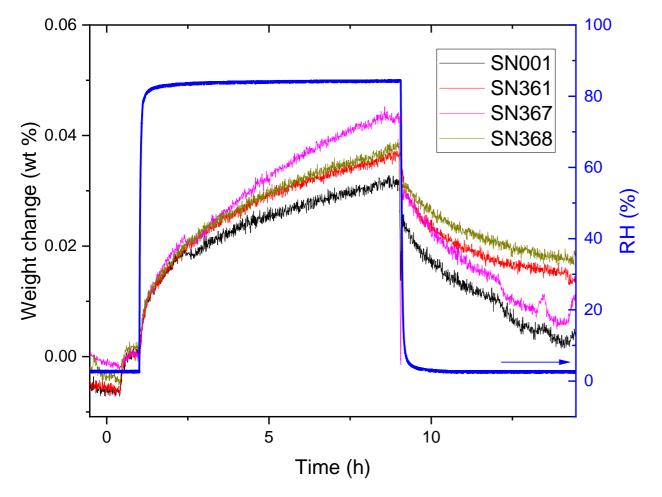
SAM

Final SAM

Samples	Sample Type	Subgroup
SN001	1 Golden type	Q0
SN367	4	Q3
SN368	4	Q3
SN369	4	Q3


- SN001: Ideal manufacturing process.
- SN367, SN368 & SN369: Delaminations in the lead fingers.
- SN367 & SN368: Evolution of the delaminated area.

Preliminary results


Dynamic sorption analysis

- In situ monitoring of the weight change.
- Real time response to different humid environments (RH and temperature control).
- Absorption and desorption measurements.

Preliminary results

Dynamic sorption analysis

Samples	Sample Type	Subgroup
SN001	1 Golden type	Q0
SN361	4	Q1
SN367	4	Q3
SN368	4	Q3
SN369	4	Q3

- SN001: No delaminations
- SN367 & SN368: Evolution of the delaminated area.

First analysis discloses higher moisture absorption on those samples that experienced delamination evolution.

Gathered data summary and future work

- Dynamic sorption analysis allows to characterize the moisture absorption of the QFN 4x4 test vehicles.
- The modified manufacturing process and the environmental stresses seem to affect the integrity of the samples and the moisture absorption response.
- RH based moisture analysis must be performed and validated after completing the dynamic sorption analysis
 of the remaining samples.
- Final physical characterization of the samples must be completed.

THANK YOU!

For any question, please contact: Luis Arriaga Head of SAM and TMA

luis.arriaga@altertechnology.com +34 684131400

