

SUMMARY

About AR Electronique

- Activity fields
- Product Overview

Space products

- Heritage
- SMD Xtal resonators
- New Space / nanOSTAR-SP

ESCCON 2023 The European Space Components Conference 7 - 9 March 2023 | Toulouse | France

AR ELECTRONIQUE / Key dates

2023 – New Space

- nanO-SP
- LEO constellations

ar Electronique

2015 – Space

USO / SAR filters

2008 – La Fayette site

- MIL-Airborne products
- Int devt (CA, USA, IS)

2000 – 1st BAW Filters

- Ecole-Valentin premises
- Radiocoms apps

1996 – First Xtal resonators

- Sartrouville Unit
- Europe activities (I, D, UK)

1991 – First Oscillators

- ASIC functions
- Broadcast applications / France

1989 – Start-up

Spin Off CNRS/LPMO

→ 34 years of high end expertise!

Test equipments

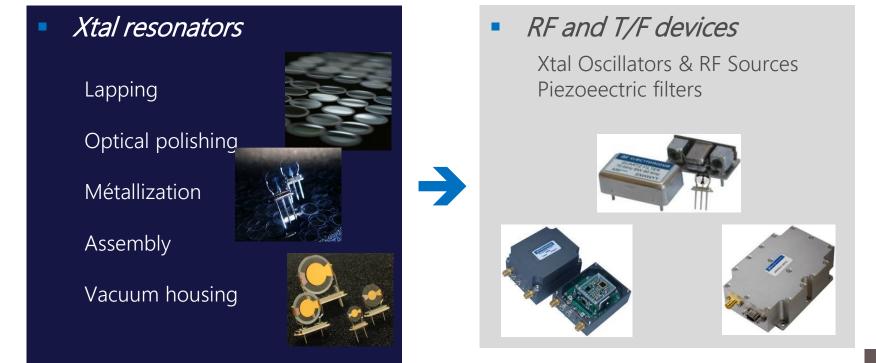
→ Identity

- Registrated May 1989, Besançon
- French independant Company
- SAS, Share capital: 1 004 619 €

→ ARE team

- 45 employees
- 15 Engineers / Ph D's
- 25 experienced technicians

Technical infrastructure


- 1 800 sqm of industrial facilities
- Resonators development and manufacturing facility
- Electronic development and manafacturing of oscillators

ar ELECTRONIQUE

In house Metrology & tests

ACTIVITY DOMAIN

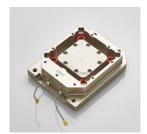
→ RF products AR Electronique designs and manufactures RF products and T/F systems for professional, defense , airborne and space applications

Design, Development & Manufacturing

→ Mil Aero & Space BAW Resonators

→ Quartz for oscillators (high stability, Ultra low G-sensitivity)

→ Resonators for RF filters (Quartz / LiTaO3)


→ Oscillators & RF Sources (COTS, Specific products)

- Leading Edge performance (Ultra Low Phase Noise, very high stability, High reliability)
- Harsh environment

Piezoelectric BAW Filters

Embedded Oscillator (MIL-Airborne)

➔ In house metrology & tests

→ Fcy stability / ADEV / Retrace Phase noise / Spectral purity

Environmental tests
Temp / vacuum / vibration / shocks

MARKET SHARES

Professional

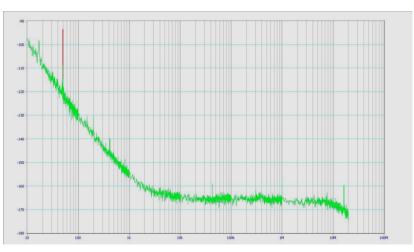
- Instrumentation / Test bench
- Telecommunication / Broadcast

Civil airborne & Space

- Radionavigation / Satcom
- SAR Satellites / Earth Observation
- New-Space

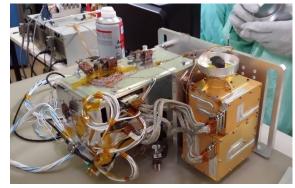
→ Defense

- Radiocommunication
- Radionavigation
- Radars, seekers & on board equipments

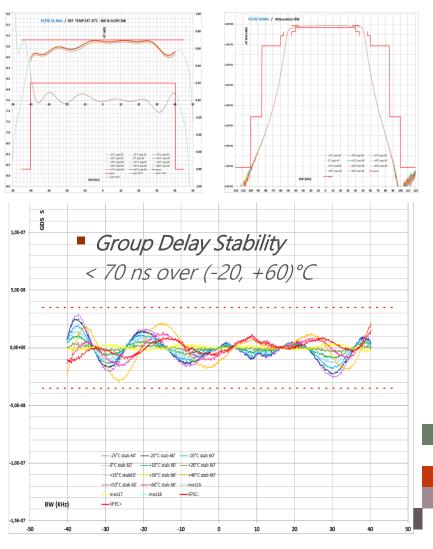

Space products

- Heritage
- SMD Xtal resonators
- New Space / nanOSTAR-SP

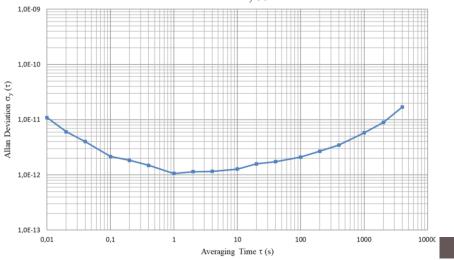
CUSTOMER	CNES (France)
PROJECT	T2L2 / JASON 2 (LEO) Scientific satellite 2008
PRODUCT	100MHz XO - FM Very low phase noise Milled case, 34x47x13 mm
COMPONENTS	COTS Xtal: HQ, std
LEVEL	MIL-STD 883
WORKMANSHIP	J-STD-001 Class 3
STATUS	In orbit over >10 years



CUSTOMER	IAS (Orsay-France)				
PROJECT	Scientific Space Mission MASCOT Lander MicrOmega instrument, HAYABUSA 2 (Europe / Japan) 2015				
PRODUCT	20MHz / 300MHz TCXO EM / QM / FM CO8 RW case				
COMPONENTS	MIL std Xtal: AT cut, MIL std				
LEVEL	MIL-STD 883				
WORKMANSHIP	J-STD-001 Class 3				
STATUS	Successful mission				



North American Tier 1
SAR GPS Satellite 2016
60MHz Xtal Filter 90kHz BW Ultra low GDS Oven controlled Milled case
QPL, MIL 55310 Lev C Xtal: IBE, swept, ESCC 3501,Lat 3-C
MIL-STD 55310 - C
ESA-Q-ST-70-08/38
EM delivered



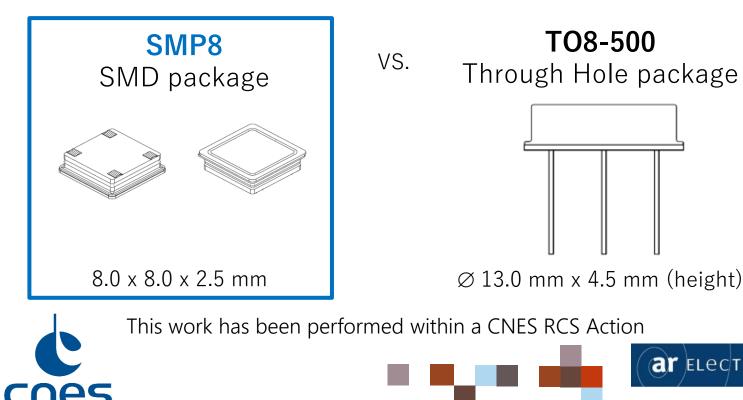
CUSTOMER	European Tier 1
PROJECT	SAR Satellite Radar 2016
PRODUCT	50MHz USO – FM/QM High stability Very low phase noise Milled case
COMPONENTS	QPL, ESA / MIL Std Xtal: HQ, swept, ESCC 3501,Lat 2-B
LEVEL	Full Class-S level MIL-STD 55310 – C
WORKMANSHIP	ESA-Q-ST-70-08/38
STATUS	FM/QM delivered In orbit since end of 2022

50MHz PULSAR-SP USO Allan Deviation $\sigma_v(\tau)$

ar Electronique

Space products

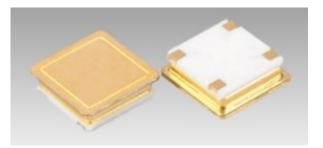
- Space Heritage
- SMD Xtal resonators
- New Space / nanOSTAR-SP oscillator


Xtal resonators / SMP8

Design, manufacturing and evaluation of SMD Crystal Resonators for Space **Applications**

A key point for oscillator size reduction.

TO8-500


ar Electronique

Xtal resonators / SMP8 product range

- 20-120 MHz Fcy range
- AT / SC Cut

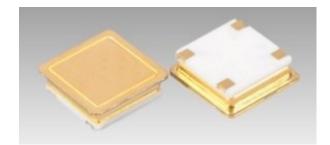
ar ELECTRONIQUE

→ Enclosure

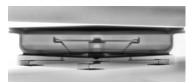
• SMD resonator design for achieving a state of the art Low g-sensitivity

- Swept
- Shortly, ARE plan to use high purity premium quartz material from CRISTAL INNOV French manufacturer.

• According to ARE PID 002 (CNES approved)

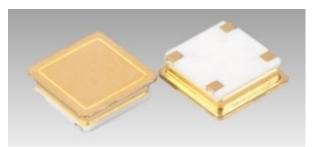

Xtal resonators / SMP8

Crystal resonator Manufacturing


 Batches of 20, 50, 100 and 120 MHz resonators for New Space applications

Manufacturing characterisation

- Crystal motional parameters
- Frequency stability vs. temperature
- Aging : 3.0 E-8 / month (max) @ 100 MHz
- Phase Noise
- g-sensitivity : 1.5 E-10 /g (typ) @ 100 MHz
- Fine Leak Test
- X-ray inspection



Xtal resonators / SMP8

→ Successfull evaluation of SMP8 resonators according to ESCC 2263501

ar Electronique

<u>GROUP 2 :</u>

- Thermal Shock Step Stress (§ 7.3.2)
- Vibration Step Stress (§ 7.3.3) : 20g, 30g et 50g
- Mechanical Shock Step Stress (§7.3.4) :
 - 50g ½ sinus 6ms.
 - 100g ½ sinus 6ms.
 - 1500g ½ sinus 0.5ms.
 - 2000g ½ sinus 0.1ms.

- Accelerated Damp Heat (§ 7.3.5)

<u>GROUP 4 :</u>

- Aging

RGA and DPA are now in progress at CNES's Analysis Laboratory

Space products

- Heritage
- SMD Xtal resonators
- New Space / nanOSTAR-SP

AR Electronique New Space products ...

... derived from <u>fully</u> <u>qualified MIL/Airborne</u> <u>oscillators</u>

Starting point

nanOSTAR-S

Miniature OCXO – nanostar S

- Low volume : 20 x 20 x 10 mm
- Low weight : < 10g</p>

Rugged design

Fully qualified on MIL-Airborne projects High reliability : 900 000 hours MTBF Robustness to random vibration and shocks COTS Components ARE <u>In House</u> HQ SC-cut Crytal resonators

High performances under environment

Fast Warm-Up : < $30 \text{ s} @ +25^{\circ}\text{C}$ Low Power Consumption : < $700 \text{ mW} @ +25^{\circ}\text{C}$ (VCC=3V3) High Frequency Stability : $\pm 5.0 \text{ E}-9$ in [- 20°C ; $+70^{\circ}\text{C}$] (10 MHz) Low Phase Noise : < -135 dBc/Hz @ 100 Hz offset (100 MHz) Low Aging : < 5.0 E-9 / month @ 10 MHzLow g-sensitivity : < 2.0 E-10 /g10 - 60 MHz (direct frequency) 60 - 120 MHz (with internal freq. Multiplier)

ar Electronique

Design steps

nanOSTAR-SP

cnes

- 1. Candidate Components list for space environment
- 2. Heavy ions evaluation (SEE)
- 3. Re-design of the OCXO
- 4. HQ crystals with Swept material
- 5. Resonators and Oscillators batch manufacturing

ar Electronique

- 6. Radiation characterisation up to 40 krad (TID)
- 7. Thermal & Mechanical Environment evaluation

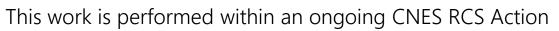
This work is carried out within an ongoing CNES RCS Action

Compact OCXO / nanOSTAR-SP

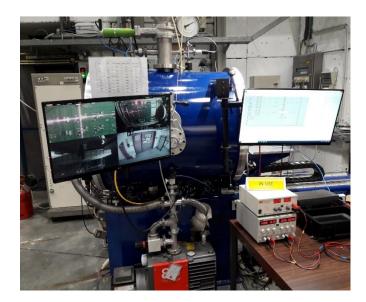
→ Qualification Program

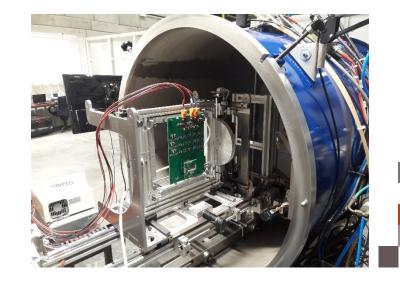
Phase	Activity	Q4-21	Q1-22	Q2-22	Q3-22	Q1/Q2-23
P1	Radiation Analysis COTS HCMOS components Heavy lons / SEL SET	EEE HCMOS Components				
P2	EM units production 2 batches 10MHz / 100MHz		Xtals	Oscillators		
P3	Qualification Radiation LDR 40 krad TID					Lot 1
P4	Qualification Temperature Vibration + Shocks Life test 1000 hours					<i>Lot 2 Lot 3 Lot 4</i>

Candidate Components idenfication & Sample preparation : **Done**


4 CMOS function (LDO, OPA, MOSFET, Logic Gate) 1 Bipolar function (bipolar Transistor)

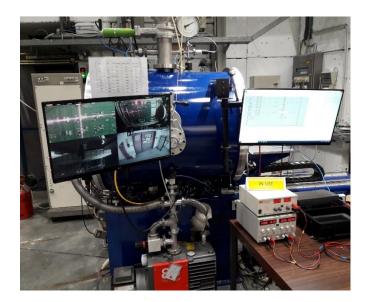
- 1. Component selection on Automotive parts (if available)
- 2. 4 alternative parts per function
- 3. Component construction analysis
- 4. Samples mounting on daughter boards
- 5. Samples delidding with acid-etch process (TRAD laboratory)

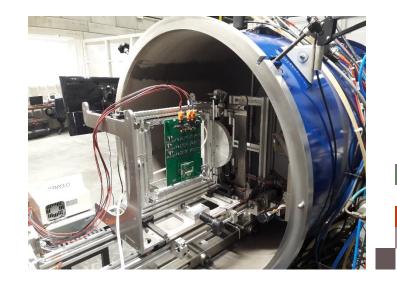

SEE evaluation : Done


- Heavy ions beam test
- 23 component references tested
- 89 component samples tested

<u>Ion Beam Test Location</u>: HIF evaluation performed at UCL in Louvain-La-Neuve (BE) Cyclotron Research Center (CRC).

<u>Ion Beam parameters</u> : Ion ¹⁰³Rh³¹⁺ , 46,1 MeV.cm²/mg, Fluence : 1E7 particules/cm², Flux : 1E4 ions/s Duration : 1000 s





SEE evaluation results

At least 2 references per function is **SEL-free** with up to 46,1 MeV.cm²/mg => **Successful**

LDO components seems to be critical items regarding SEE under heavy ions with only 1 SEL-free part on 6 candidate references tested. => Successful

Re-Design & Manufacturing

nanOSTAR-SP

Minor Nanostar PCB re-design in order **Done** to fit with SEE qualified components footprints.

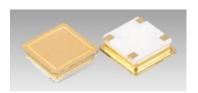
HQ crystals with Swept material Done manufacturing & Testing

Oscillators batch manufacturing Done

ar Electronique

Evaluation to be finalised

Radiation evaluation up to 40 kradQ2 2023(TID) at TRAD Co60 facility
(design already successfully
evaluated up to 100 krad in 2019)The set of the set


nanOSTAR-SP

Thermal & Mechanical Environment Q2 2023 evaluation (design already successfully qualified for military airborne applications)

Conclusion

SMP8 XTAL Resonator

nanOSTAR-SP

ARE Solutions for Space applications

- SMP8 Space resonator (ESCC 2263501 qualified)
- Miniature OCXO for New Space application 10 – 120 MHz

SEL-free

- New Space Evaluation finalized May 2023 High performances :
- 20 x 20 x 10 mm
- Fast Warm-Up : < 30 s @ +25°C
- Low power consumption : < 700 mW @ +25°C (VCC=3V3)
- High Frequency Stability : ±5.0 E-9 in [-20°C; +70°C] (10 MHz)

- Low Phase Noise : < -135 dBc/Hz @ 100 Hz offset (100 MHz)
- Low aging
- Low g-sensitivity : < 2.0 E-10 /g
- 10 60 MHz (direct frequency)
- 60 120 MHz (with internal freq. Multiplier)

ar ELECTRONIQUE

→ Many thanks for your attention !

Contact:

Patrick Bellenger - Sales patrick.bellenger@ar-e.com

Pierre Boillot - Engineering <u>pierre.boillot@ar-e.com</u>

Emmanuel Girardet - CEO <u>emmanuel.girardet@ar-e.com</u>

