

March, 9th, 2023

Confidential Information

AGENDA

MNEMOSYNE: Magnetic non-volatile Random Access Memory for space with serial interface

INTRODUCTION

- $_{\odot}$ What is MNEMOSYNE project ?
- \circ Project pillars
- Advantages forseen

FIRST DESIGN

- $_{\odot}$ The test vehicle (TV)
- Rad-hard design techniques
- $_{\odot}$ Tests and results

PRODUCTS

- \circ Prototype
- \circ Architecture
- \circ Presentation
- \circ Positioning
- CONCLUSION

INTRODUCTION

MNEMOSYNE: Magnetic non-volatile Random Access Memory for space with serial interface

Context: Enhance EU independence on the space market

Funded by EU Horizon 2020 research and innovation program

Goal: Design and prototype the new generation of rad-hard high density NVM with serial interface based on most-advance and matured technology

Applications:

- \circ **Boot code storage** for microcontrollers and microprocessors
- o FPGA configuration bitstream storage

Consortium members:

3

MNEMOSYNE project

Project pillars

000000

0000

I Confidential

INTRODUCTION

Advantages forseen

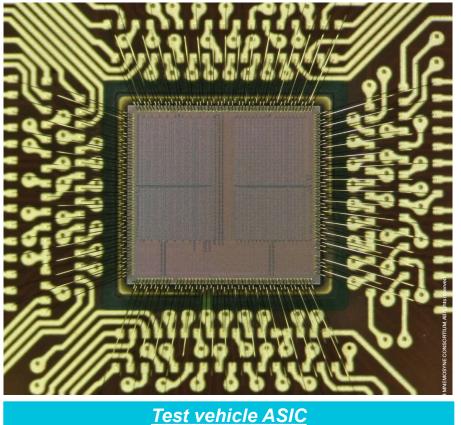
- STT-MRAM technology provides SEU immunity to memory cell.
- FD-SOI (Fully-Depleted Silicon-On-Insulator) process brings SEL immunity.
- 22nm FD-SOI provides: up to 40% die scaling, and nearly 70% power saving relative to the standard
 28nm node, or similar power efficiency to FinFET technology.
- 3D PLUS technology is used to increase the device density.

FIRST DESIGN

Test vehicle

- A 64 Mb test vehicle was manufactured and tested during 2022 Summer.
 - $_{\odot}\,\text{STT-MRAM}$ memory arrays with embedded ECC
 - o A memory controller
 - $_{\odot}\,A$ fuse-based read-only configuration memory
 - A Power Management Unit (PMU)
 - $_{\odot}$ Two SPI interfaces (1.8 V and 3.3 V).

Test vehicle module

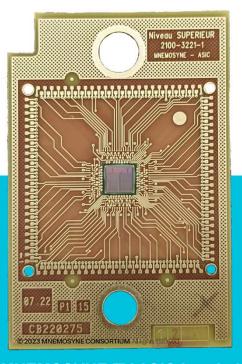

FIRST DESIGN

Test vehicle: Rad-hard design techniques

- Rad hard design techniques on control logic and interfaces
 - Redundancy, restricted cell sets on SEU critical parts.
 - $_{\odot}\,\text{SET}$ immune on clock and reset trees
 - \circ Glitch filters on strategic nodes
 - $_{\odot}$ Derating accounting for device aging and TID.

7

 \circ Leakage reduction (body bias, process)

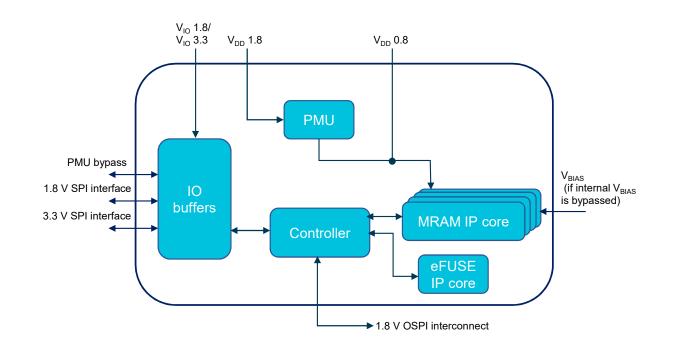


FIRST DESIGN

Results summary

TID > 100 krad(Si) SEL/SEU LETh > 60 MeV.cm²/mg 1000h Life test passed with 30 measurements QSPI/SPI interface validated

MNEMOSYNE TV ASIC bonded

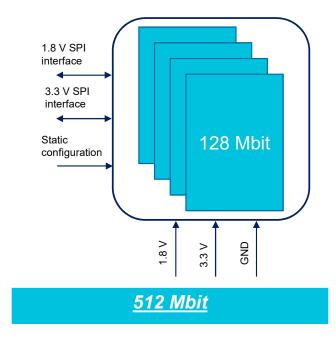


PROUCTS 128 Mbit Prototype

Design update

- Goals:
 - Density increase
 - \circ TV errors correction
 - EEPROM interface
- Manufacturing in progress
- Available by Q2'23

128 Mbit prototype architecture



000

PRODUCTS

Architecture

000

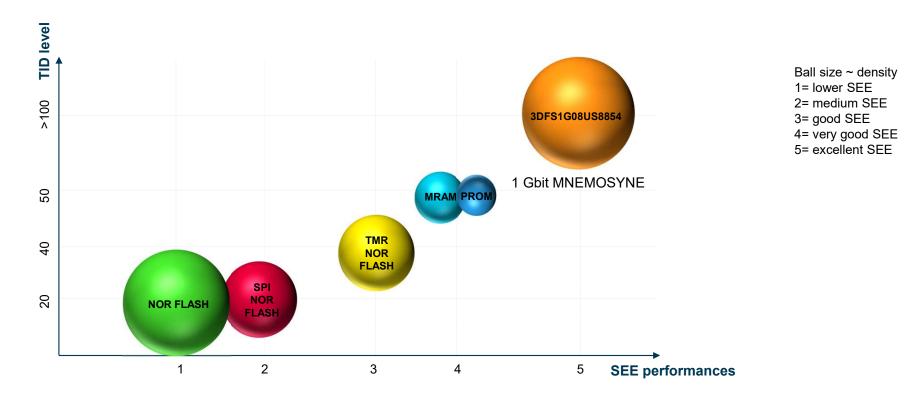
Ó

PRODUCTS Up to 1 Gbit rad-hard NVM with serial interface

KEY FEATURES

- $_{\odot}\,$ 512 Mb, 1 Gb density
- $_{\odot}\,\text{Up}$ to 100 MHz
- $\circ \text{Embedded ECC}$
- \circ Power management embedded
- o 1.8 V SPI interface (3.3 V optional)
- SPI, QSPI, DSPI, OSPI modes supported
- \circ 100 k P/E cycles
- $\circ\,\text{20}$ years data retention

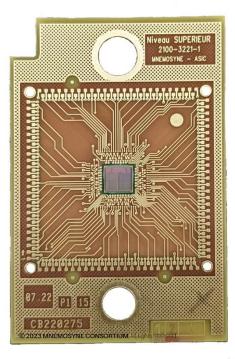
RADIATION PERFORMANCES


TID > 100 krad(Si)
 SEL > 60 MeV.cm²/mg
 SEU > 60 MeV.cm²/mg
 SET > 60 MeV.cm²/mg
 SEFI > 60 MeV.cm²/mg

The SEE LET threshold would be tested in other facilities with 80 MeV.cm²/mg target

CONFIGURATION MEMORIES

3D PLUS portfolio update



CONCLUSION

- The Next Generation Radiation Hardened space serial Non Volatile Memory up to 1Gb density with proven TID >100Krad(si) and SEL/SEU LET threshold > 60MeV.cm²/mg.
- This product while enhancing EU independence on the space market will be the best in class of program/configuration memory combining that level of reliability with such density.
- 512 Mbit/ 1 Gbit density modules available by Q4 '23
- Authors would like to thank the European Commission and all the members of the consortium that are driving this project.
- MNEMOSYNE project used the results of another Horizon 2020 project named EFESOS.

www.3d-plus.com

408 rue Hélène Boucher 78530 Buc - **FRANCE** +33 130 832 650

151 Callan Ave, Suite 310 San Leandro CA 94577 - **USA** (415) 316 0981

OUR MISSION IS THAT YOU ACHIEVE YOURS

