

		APPLICATION FOR EXTENSION OF ESCC QUALIFICATION APPROVAL				Page 1	
Component Title: Capacitors Filters, C-type, Feed through, based on types SFC30/35/40 Executive Member: CNES				Date: 26/11/2025		Appl. No. 375B	
Components (including series and families) submitted for Extension of Qualification Approval:						1	
ESCC COMPONENT NO.	VARIANTS	RANGE OF COMPONENTS		BASED ON	TEST VEHICLE / S	COMPONENT SIMILAR	
3008 020	01 02 04 05	See box 14		SFC 030 SV	300802001C103MC 300802002682ME 300802002682ME		
3008 031	01 02 04 05			SFC 035	300803102B471ME 300803104B223MC		
3008 032	01 02 04 05 07 08 10 11			SFC 040	300803207B223MC 300803202B682ME		
Component Manufacturer		2	Location of Manufacturing Plant(s)	3	4		
EXXELIA SAS			EXXELIA 1, rue des Temps Modernes 77600 CHANTELOUP EN BRIE FRANCE		Date of original qualification approval: Date: 01/08/1998 Certificate Ref No. 252		
ESCC Specifications used for Maintenance of qualification testing:		5	Deviations to LVT testing and Detail Specification used: Generic: 3008 Issue: 7 Detail(s): 3008/020 Issue: 7 3008/031 5 3008/032 4	6	7 Qualification Extension Report reference and date:		
			No <input checked="" type="checkbox"/> Yes <input type="checkbox"/> (supply details in Box 15)				
			Deviation from current Specifications: No <input checked="" type="checkbox"/> Yes <input type="checkbox"/> (Supply details)				
8 Summary of procurement or equivalent test results during current validity period in support of this application (those to ESCC listed first)							
Project Name	Testing Level	LAT		Date code	Quantity Delivered		
RAKON France RGM TAS France TAS Spain					290		
PID changes since start of qualification			9	Current PID	Verified by:	CNES	10
None <input type="checkbox"/>				Name of Executive Representative			
Minor* <input type="checkbox"/>				Ref No:	505.95.390		
Major* <input checked="" type="checkbox"/> *Provide details in box:			19	Issue:	L	Date:	02/06/2021
Rev Date: 01/11/2025							
11 Current Manufacturing facilities surveyed by: <u>ESA & CNES</u> on <u>13/10/2023</u> (Name of Executive Representative)							
Satisfactory: Yes <input checked="" type="checkbox"/> No <input type="checkbox"/> Explain							
Report Reference: <u>2023.0016237 ESCC Audit Report</u> <u>EXXELIA Chanteloup-En-Brie</u>							

	APPLICATION FOR EXTENSION OF ESCC QUALIFICATION APPROVAL Component title: Capacitors Filters, C-type, Feed through, based on types SFC30/35/40 Executive Member: CNES	Page 2 Appl. No. 375B																																																																			
		12																																																																			
Failure Analysis, DPA, NCCS available: Yes <input checked="" type="checkbox"/> No <input type="checkbox"/> (Supply data)																																																																					
Ref. No's and purposes: NCCS 2CETE404 : decohesion between resin and housing - closed NCCS 1CETE501: setup issue - closed																																																																					
The undersigned hereby certifies on behalf of the ESCC Executive - that the above information is correct; - that the appropriate documentation has been evaluated; - that full compliance to all ESCC requirements is evidence (except as stated in box 15); - that the reports and data are available at the ESCC Executive and therefore applies on behalf of CNES as the responsible Executive Member for ESCC qualification status to be extended to the component(s) listed herein.																																																																					
Date: 26/11/2025		 Signature numérique de Fontaine Lya Date : 2025-11-26 15:12:05 +01'00'																																																																			
(Signature of the Executive Coordinator)																																																																					
Continuation of Boxes above:																																																																					
Range of components :																																																																					
SFC 30 SV :																																																																					
<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th>Type Variant</th> <th>Rated DC Voltage U_R (V) (at Tamb $\leq +85^\circ\text{C}$)</th> <th>Range of Capacitance Values C (pF) E6 Series Tolerance $\pm 20\%$</th> <th>Voltage Proof V_P (V)</th> <th>Voltage Drop V_{dr} (V)</th> <th>DC Resistance R_s (mΩ)</th> <th>Rated Current I_R (A)</th> </tr> </thead> <tbody> <tr> <td>01</td> <td>50</td> <td>470 to 22000</td> <td>125</td> <td>0.05</td> <td>5</td> <td>5</td> </tr> <tr> <td>02</td> <td>100</td> <td>470 to 6800</td> <td>250</td> <td>0.05</td> <td>5</td> <td>5</td> </tr> <tr> <td>04</td> <td>50</td> <td>470 to 22000</td> <td>125</td> <td>0.05</td> <td>5</td> <td>5</td> </tr> <tr> <td>05</td> <td>100</td> <td>470 to 6800</td> <td>250</td> <td>0.05</td> <td>5</td> <td>5</td> </tr> </tbody> </table>							Type Variant	Rated DC Voltage U_R (V) (at Tamb $\leq +85^\circ\text{C}$)	Range of Capacitance Values C (pF) E6 Series Tolerance $\pm 20\%$	Voltage Proof V_P (V)	Voltage Drop V_{dr} (V)	DC Resistance R_s (m Ω)	Rated Current I_R (A)	01	50	470 to 22000	125	0.05	5	5	02	100	470 to 6800	250	0.05	5	5	04	50	470 to 22000	125	0.05	5	5	05	100	470 to 6800	250	0.05	5	5																												
Type Variant	Rated DC Voltage U_R (V) (at Tamb $\leq +85^\circ\text{C}$)	Range of Capacitance Values C (pF) E6 Series Tolerance $\pm 20\%$	Voltage Proof V_P (V)	Voltage Drop V_{dr} (V)	DC Resistance R_s (m Ω)	Rated Current I_R (A)																																																															
01	50	470 to 22000	125	0.05	5	5																																																															
02	100	470 to 6800	250	0.05	5	5																																																															
04	50	470 to 22000	125	0.05	5	5																																																															
05	100	470 to 6800	250	0.05	5	5																																																															
SFC 35 :																																																																					
<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th>Type Variant</th> <th>Rated DC Voltage U_R (V) (at Tamb $\leq +85^\circ\text{C}$)</th> <th>Range of Capacitance Values C (pF) E6 Series Tolerance $\pm 20\%$</th> <th>Voltage Proof V_P (V)</th> <th>Voltage Drop V_{dr} (V)</th> <th>DC Resistance R_s (mΩ)</th> <th>Rated Current I_R (A)</th> </tr> </thead> <tbody> <tr> <td>01</td> <td>50</td> <td>470 to 22000</td> <td>125</td> <td>0.1</td> <td>10</td> <td>10</td> </tr> <tr> <td>02</td> <td>100</td> <td>470 to 6800</td> <td>250</td> <td>0.1</td> <td>10</td> <td>10</td> </tr> <tr> <td>04</td> <td>50</td> <td>470 to 22000</td> <td>125</td> <td>0.1</td> <td>10</td> <td>10</td> </tr> <tr> <td>05</td> <td>100</td> <td>470 to 6800</td> <td>250</td> <td>0.1</td> <td>10</td> <td>10</td> </tr> </tbody> </table>							Type Variant	Rated DC Voltage U_R (V) (at Tamb $\leq +85^\circ\text{C}$)	Range of Capacitance Values C (pF) E6 Series Tolerance $\pm 20\%$	Voltage Proof V_P (V)	Voltage Drop V_{dr} (V)	DC Resistance R_s (m Ω)	Rated Current I_R (A)	01	50	470 to 22000	125	0.1	10	10	02	100	470 to 6800	250	0.1	10	10	04	50	470 to 22000	125	0.1	10	10	05	100	470 to 6800	250	0.1	10	10																												
Type Variant	Rated DC Voltage U_R (V) (at Tamb $\leq +85^\circ\text{C}$)	Range of Capacitance Values C (pF) E6 Series Tolerance $\pm 20\%$	Voltage Proof V_P (V)	Voltage Drop V_{dr} (V)	DC Resistance R_s (m Ω)	Rated Current I_R (A)																																																															
01	50	470 to 22000	125	0.1	10	10																																																															
02	100	470 to 6800	250	0.1	10	10																																																															
04	50	470 to 22000	125	0.1	10	10																																																															
05	100	470 to 6800	250	0.1	10	10																																																															
SFC 40 :																																																																					
<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th>Type Variant</th> <th>Rated DC Voltage U_R (V) (at Tamb $\leq +85^\circ\text{C}$)</th> <th>Range of Capacitance Values C (pF) E6 Series Tolerance $\pm 20\%$</th> <th>Voltage Proof V_P (V)</th> <th>Voltage Drop V_{dr} (V)</th> <th>DC Resistance R_s (mΩ)</th> <th>Rated Current I_R (A)</th> </tr> </thead> <tbody> <tr> <td>01</td> <td>50</td> <td>470 to 22000</td> <td>125</td> <td>0.1</td> <td>10</td> <td>10</td> </tr> <tr> <td>02</td> <td>100</td> <td>470 to 6800</td> <td>250</td> <td>0.1</td> <td>10</td> <td>10</td> </tr> <tr> <td>04</td> <td>50</td> <td>470 to 22000</td> <td>125</td> <td>0.1</td> <td>10</td> <td>10</td> </tr> <tr> <td>05</td> <td>100</td> <td>470 to 6800</td> <td>250</td> <td>0.1</td> <td>10</td> <td>10</td> </tr> <tr> <td>07</td> <td>50</td> <td>470 to 22000</td> <td>125</td> <td>0.1</td> <td>10</td> <td>10</td> </tr> <tr> <td>08</td> <td>100</td> <td>470 to 6800</td> <td>250</td> <td>0.1</td> <td>10</td> <td>10</td> </tr> <tr> <td>10</td> <td>50</td> <td>470 to 22000</td> <td>125</td> <td>0.1</td> <td>10</td> <td>10</td> </tr> <tr> <td>11</td> <td>100</td> <td>470 to 6800</td> <td>250</td> <td>0.1</td> <td>10</td> <td>10</td> </tr> </tbody> </table>							Type Variant	Rated DC Voltage U_R (V) (at Tamb $\leq +85^\circ\text{C}$)	Range of Capacitance Values C (pF) E6 Series Tolerance $\pm 20\%$	Voltage Proof V_P (V)	Voltage Drop V_{dr} (V)	DC Resistance R_s (m Ω)	Rated Current I_R (A)	01	50	470 to 22000	125	0.1	10	10	02	100	470 to 6800	250	0.1	10	10	04	50	470 to 22000	125	0.1	10	10	05	100	470 to 6800	250	0.1	10	10	07	50	470 to 22000	125	0.1	10	10	08	100	470 to 6800	250	0.1	10	10	10	50	470 to 22000	125	0.1	10	10	11	100	470 to 6800	250	0.1	10	10
Type Variant	Rated DC Voltage U_R (V) (at Tamb $\leq +85^\circ\text{C}$)	Range of Capacitance Values C (pF) E6 Series Tolerance $\pm 20\%$	Voltage Proof V_P (V)	Voltage Drop V_{dr} (V)	DC Resistance R_s (m Ω)	Rated Current I_R (A)																																																															
01	50	470 to 22000	125	0.1	10	10																																																															
02	100	470 to 6800	250	0.1	10	10																																																															
04	50	470 to 22000	125	0.1	10	10																																																															
05	100	470 to 6800	250	0.1	10	10																																																															
07	50	470 to 22000	125	0.1	10	10																																																															
08	100	470 to 6800	250	0.1	10	10																																																															
10	50	470 to 22000	125	0.1	10	10																																																															
11	100	470 to 6800	250	0.1	10	10																																																															

		APPLICATION FOR EXTENSION OF ESCC QUALIFICATION APPROVAL		Page 3
		Component title: Capacitors Filters, C-type, Feed through, based on types SFC30/35/40	Appl. No.	
		Executive Member: CNES	Date: 26/11/2025	375B
Non compliance to ESCC requirements:				15
No.:	Specification	Paragraph	Non compliance	
Additional tasks required to achieve full compliance for ESCC qualification or rationale for acceptability of noncompliance:				16
Executive Manager Disposition				17
Application Approval: Yes <input checked="" type="checkbox"/> No <input type="checkbox"/>				
Action / Remarks:				
Date: 31 December 2025				
Signature, ESA Representative				

	APPLICATION FOR EXTENSION OF ESCC QUALIFICATION APPROVAL Component Title: Capacitors Filters, C-type, Feed through, based on types SFC30/35/40 Executive Member: CNES				Page 4 Appl. No. 375B
ANNEX 1: LIST OF TESTS DONE TO SUPPORT EXTENSION OF QUALIFICATION					18
Tests conducted in compliance with: - ESCC 3009 generic specification; Chart V (for ESCC/QPL parts); - Or PID-TFD [REDACTED] (for ESCC/QML parts)					
Tests vehicle identification/description: 300802001C103MC DC 2528 300802002682ME DC 2530 300802002682ME DC 2532 300803102B471ME DC 2425 300803104B223MC DC 2336 300803207B223MC DC 2428 300803202B682ME DC 2409					
Detail Specification reference:					

Chart V	Test	Tick when done	Conditions	Date Code	Tested Qty	No. of Rejects	Comments if not performed. Comments on Rejection
Environmental / Mechanical Subgroup (Column 1)	Temperature Rise	<input checked="" type="checkbox"/>	ESCC 3008, Para. 8.9	2425 2336 2428 2409	12 6 12 12	0 0 0 0	*Only applicable to Qualification Testing, and to Periodic Testing for renewal of qualification after lapse.
	Overload	<input checked="" type="checkbox"/>	ESCC 3008, Para. 8.10	2425 2336 2428 2409	12 6 12 12	0 0 0 0	*Only applicable to Qualification Testing, and to Periodic Testing for renewal of qualification after lapse.
	Low Air Pressure	<input checked="" type="checkbox"/>	IEC 68-2-13	2528 2530 2532 2425 2336 2428 2409	12 12 12 12 6 12 12	0 0 0 0 0 0 0	
	Damp Heat	<input checked="" type="checkbox"/>	ESCC 3008, Para. 8.12	2528 2530 2532 2425 2336 2428 2409	12 12 12 12 6 12 12	0 0 0 0 0 0 0	
Environmental / Mechanical Subgroup (Column 2)	Resistance to soldering heat	<input checked="" type="checkbox"/>	ESCC 3008, Para. 8.13	2425 2336 2428 2409	12 6 12 12	0 0 0 0	*Only applicable to Qualification Testing, and to Periodic Testing for renewal of qualification after lapse.
	Shock	<input checked="" type="checkbox"/>	IEC 68-2-27	2528 2530 2532 2425 2336 2428 2409	12 12 12 12 6 12 12	0 0 0 0 0 0 0	
	Vibration	<input checked="" type="checkbox"/>	IEC 68-2-6	2528 2530 2532 2425 2336 2428 2409	12 12 12 12 6 12 12	0 0 0 0 0 0 0	

Environmental / Mechanical Subgroup (Column 3)	Damp Heat	<input checked="" type="checkbox"/>	ESCC 3008, Para. 8.12	2528 2530 2532 2425 2336 2428 2409	12 12 12 12 6 12 12	0 0 0 0 0 0 0	
	External Visual Inspection	<input checked="" type="checkbox"/>	ESCC 20500	2528 2530 2532 2425 2336 2428 2409	12 12 12 12 6 12 12	0 0 0 0 0 0 0	
	Shock	<input checked="" type="checkbox"/>	IEC 68-2-27	2425 2336 2428 2409	12 6 12 12	0 0 0 0	*Only applicable to Qualification Testing, and to Periodic Testing for renewal of qualification after lapse.
	Rapid Change of Temperature	<input checked="" type="checkbox"/>	ESCC 3008, Para. 8.3	2425 2336 2428 2409	12 6 12 12	0 0 0 0	*Only applicable to Qualification Testing, and to Periodic Testing for renewal of qualification after lapse.
	Accelerated Damp Heat	<input checked="" type="checkbox"/>	ESCC 3008, Para. 8.16	2425 2336 2428 2409	12 6 12 12	0 0 0 0	*Only applicable to Qualification Testing, and to Periodic Testing for renewal of qualification after lapse.
	Damp Heat	<input checked="" type="checkbox"/>	ESCC 3008, Para. 8.12	2425 2336 2428 2409	12 6 12 12	0 0 0 0	*Only applicable to Qualification Testing, and to Periodic Testing for renewal of qualification after lapse.
	Operating Life	<input checked="" type="checkbox"/>	ESCC 3008, Para. 9.19	2528 2530 2532 2425 2336 2428 2409	20 20 20 64 20 64 64	0 0 0 0 0 0 0	
	Electrical Measurements during Endurance Testing	<input checked="" type="checkbox"/>	ESCC 3008, Para. 9.4.5	2528 2530 2532 2425 2336 2428 2409	20 20 20 64 20 64 64	0 0 0 0 0 0 0	
	External Visual Inspection	<input checked="" type="checkbox"/>	ESCC 20500	2528 2530 2532 2425 2336 2428 2409	20 20 20 64 20 64 64	0 0 0 0 0 0 0	
	Damp Heat	<input checked="" type="checkbox"/>	ESCC 3008, Para. 9.24	2528 2530 2532 2425 2336 2428 2409	20 20 20 64 20 64 64	0 0 0 0 0 0 0	
Electrical Subgroup (Ass. / Capab. Tests)	Solderability	<input checked="" type="checkbox"/>	IEC 68-2-20	2528 2530 2532 2425 2336 2428 2409	6 6 6 6 4 6 6	0 0 0 0 0 0 0	
	Permanence of Marking	<input type="checkbox"/>	ESCC 24800				NA

	Robustness of Terminations	<input checked="" type="checkbox"/>	IEC 68-2-21	2528	6	0	
				2530	6	0	
	External Visual Inspection	<input checked="" type="checkbox"/>	ESCC 20500	2532	6	0	
				2425	6	0	
				2336	4	0	
				2428	6	0	
				2409	6	0	

APPLICATION FOR EXTENSION OF ESCC QUALIFICATION APPROVAL

Component title: Capacitors Filters, C-type, Feed through, based on types SFC30/35/40

Executive Member: CNES

Date: 26/11/2025

Page 6

Appl. No.

375B

NOTES ON THE COMPLETION OF THE APPLICATION FORM FOR ESCC QUALIFICATION EXTENSION APPROVAL**ENTRIES**

Form heading

shall indicate: - the title of the component as given in its detail specification or the name of the series, family; - the Executive Member; - the entering date; - the certificate number and its sequential suffix.

Box 1

shall provide details given in the table; in particular there shall be listed: - the variants or range of variants; - the range of components (the ESCC code is recommended to indicate the values or values range, the tolerance, the voltage, etc); the designation given in the detail specification as 'base on'; - under Test Vehicle enter either an ESCC code or the specific characteristic capable of identifying the component tested (e.g., voltage of coil for a relay); - under component similar enter a cross if relevant.

Box 2; 3 and 4

As per QPL entry; otherwise, an explanation of the changes must be supplied.

Box 5

Will show the ESCC Generic and Detail specifications, including issue number and revision letter, current at the time the tests reported were performed. If the specifications are different from those current on the date of the application, see Box 6.

Box 6

Will show the deviations from the Generic and Detail Specifications listed in Box 5, in particular deviations from testing. In case of deviations this must be listed in Box 15. In case the referenced specification in Box 5 have currently a different issue and/or revision indicate also whether the test data deviates or not from such current documents.

Box 7

Must reference the report(s) supplied in support of the application.

Box 8

Should provide the details of procurement to the full ESCC System, documentation of all of which should already have been delivered to the ESCC Executive under the terms of the relevant Generic Specification. An appropriate table has been drawn in this box.

Box 9

If the PID evolved after the Original Qualification or after the last Extension of Qualification, adequate details of such evolution shall be provided together with the reasons for the changes. Major changes shall be clearly marked.

Box 10

Identify the current PID issue status, date and actual date of verification. The date of verification of the current PID should be arranged as close as possible to the required date of extension.

Box 11

This box can be completed only after a physical visit to the plant to confirm that no unexplained changes occurred and that the practices, procedures, material, etc. used in manufacturing the components are as described in the PID. This survey shall be carried out in accordance with the requirements of ESCC Basic Specification No. 20200 and its findings shall be recorded.

Box 12

Provide details of, or reference to, any Destructive Physical Analysis (DPA) and Failure Analysis reports as well as any Nonconformance(s) (NCCS) occurred during the qualification validity period, stating if established corrective action have produced satisfactory results.

Box 13

Enter only the name of the Executive Member (i.e., CNES, DLR, ESTEC, etc.) and the signature of the responsible Executive Coordinator.

Box 14

To be used when there is a need to expand any of the boxes from 1 through 12. Identify box affected and reference the Box 14 in the relevant Box. Box 14 can be broken into 14a, 14b, etc. if several boxes have to be expanded.

Box 15

Fill in Table as requested.

Box 16

Any additional action deemed necessary by the Executive Member to bring the submitted data to a standard likely to be accepted by the ESCC Executive should be listed herein or the reason(s) to accept the noncompliance.

Box 17

All Executive Manager recommendations on the application itself, special conditions or restrictions, modifications of the QPL or QML entry, letters to the manufacturer, etc. shall be entered clearly in Box 19, signed by the representative for ESA, and dated.

Box 18

Fill in Table as requested.

Box 19

Confidential Details of PID changes including those of a confidential nature, shall be provided.

Box 20

State noncompliance with reference to specification(s) and paragraph(s). To simplify reference in Box 16 each nonconformance shall be sequentially numbered. If relevant state 'None'.

Box 21

Any additional action deemed necessary by the Executive Member to bring the submitted data to a standard likely to be accepted by the ESCC Executive should be listed herein or the reason(s) to accept the noncompliance.

Box 22

Additional Comments.