



6th ESA Round Table on Micro & Nano Technologies

# Integrated Electrospray Micropropulsion System

R. Krpoun (Renato.krpoun@epfl.ch) and <u>H. Shea</u> (herbert.shea@epfl.ch)

Microsystems for Space Technologies Laboratory EPFL, Lausanne Switzerland







H. Shea | R. Krpoun | October 8, 2007

© 2007 EPFL-STI/IMM/LMTS



## Acknowledgments

The authors would like to thank:

- ESA and Mr. José González del Amo for support (ESA ITI Type A -Contract No 20022/06/NL/PA)
- Katharine Smith & John Stark at Queen Mary, University of London, United Kingdom for very valuable inputs during the development of the thrusters
- the staff of the EPFL-CMI and the University of Neuchâtel COMLAB for their help during device fabrication.

#### 6th ESA Round Table on Micro & Nano Technologies



# Outline

- Introduction
- Thruster Design
- Microfabrication
- Experimental Details
- First Results
- Conclusion and outlook







#### Introduction to Electrospray Electrosprays

- Principle of operation: a liquid at the tip of a capillary is electrically charged to a high voltage. Above a critical threshold the liquid deforms into a cone and a spray of charged droplets or ions is accelerated towards an extractor electrode.
- Several research groups have observed transition from ions to droplets in sprays when using ionic liquids as fuel.
- In ionic mode a large lsp ( > 1000s) can be reached, but thrust is low thus the motivation of having arrays of emitters.

$$Isp = \frac{1}{g} \sqrt{2V_a \frac{q}{m}} \qquad T = I \frac{m}{q} \sqrt{2V_a \frac{q}{m}}$$

Specific impulse

Thrust



- q charge
- *m* particle mass
- $V_a$  applied voltage
- I current
- g gravitational constant



## Propulsion requirements – future ESA missions

| Parameter                 | Value                       |
|---------------------------|-----------------------------|
| Thrust                    | 1 <i>μ</i> N to 1 mN        |
| Thrust noise              | <0.1 µN / Hz <sup>1/2</sup> |
| Mass                      | minimize                    |
| lsp                       | > 4000 s                    |
| Thrust resolution         | < 0.1 <i>µ</i> N            |
| Thrust linearity          | < 4 $\mu$ N $\pm$ 4%        |
| Thrust repeatability      | < 0.5 $\mu$ N ± 0.5%        |
| Lifetime                  | > 10'000 hours              |
| Thrust vector instability | minimize                    |





#### Introduction Micro-Fabrication – Advantages (1)

- Scalability with MEMS technology large arrays can be microfabricated (easily covering 100 cm<sup>2</sup>) to increase thrust
- Redundancy: if a few emitters in an array fail, the thruster continues to operate
- Low voltage: the very small spacing / (<25 μm) between ion source and extraction electrodes which, coupled with small capillary diameter *d*, can decrease to under 500 V the voltage required to spray from a Taylor cone.





Microfabrication test





#### Introduction Micro-Fabrication – Advantages (2)

- No moving parts: all thrust control is done by changing voltages on extraction and acceleration electrodes.
- Large thrust range
  - by continuously going from ionic mode to droplet mode: can choose between high mass or high power efficiency.
  - By emitting only from selectable subset of capillaries
- Fluidic network can be integrated in the back of the chip: no pumping



SEM image of a fluid handling system on the back of a capillary chip





## Thruster Design: Overview

- Each capillary emitter has an individual extractor electrode. Two designs:
  - All extractors in parallel (same voltage on all)
  - Individually addressable extractor electrodes to spray from any given capillary
- For vacuum testing the microfabricated thruster is mounted on a PCB.
- **No active pumping** is necessary, wetting of structures occurs through capillarity.







## Thruster Design: Geometry and Wafer Layout



Thruster cross section with standard dimensions



#### Capillaries, various diameters



#### Extractors, various diameters



4" wafer

© 2007 EPFL-STI/IMM/LMTS



# Microfabrication Facilities

- Access to two state-of-the-art MEMS cleanroom facilities:
  - COMLAB (Neuchâtel)
  - CMI/EPFL (Lausanne)
- For quality assurance, debugging and process development, access to the following tools is available (in Neuchâtel and Lausanne):
  - Scanning Electron Microscopes (including ESEM, EDX, BSE ...)
  - Transmission electron microscope (including FIB for sample preparation)
  - Various optical microscopes for process control and thin film characterization
  - Etc.









#### Microfabrication Process Flow – Capillary Arrays

- Two distinct elements have been developed
  - Capillary Emitters (modification of a design by Griss, *et al.*, J. Micromech. Microeng.**12** (2002), pp. 682—687)
  - Extractor electrodes
- The design allows to stack further electrostatic lens components



#### Thruster assembly <u>with</u> individually adressable extractor electrodes





#### Microfabrication Capillaries



SEM images of a capillary emitter





Fig. Thruster assembly with individually adressable extractor electrodes





## Microfabrication Extractor



SEM image of wirebonding pad



#### SEM image of extractor electrode array



SEM image of extractor electrode





#### Microfabrication Assembly



Fig. Assembled thruster with simultaneous addressable electrodes



Fig. Assembled thruster with individually addressable electrodes



Fig. Setup to assemble individual chips below a microscope



## Beam current & energy measurements Test bench – Overview



Schematic layout of test setup

- 1 Vacuum chamber
- 2 Supression Grid
- 3 Retarding grid
- 4 Extractor electrode (on chip)
- 5 Capillary emitter (on chip)
- 6 Faraday cup
- 7 Picoammeter
- 8 Voltage source (supression grid)
- 9 Voltage source (retarding grid)
- 10 Voltage source (emitter)
- 11 Turbomolecular vacuum pump
- 12 Roughing pump
- 13 Pressure gauge



#### Beam current & energy measurements



Fig. Ion gun with mounted Faraday cup



Fig. Electrospray test-rig at EPFL-LMTS



Current-voltage curve for a capillary with a  $20\mu$ m i.d. and  $140\mu$ m diameter electrodes spaced at (a)  $25\mu$ m and (b)  $40\mu$ m from the emitter



Current-voltage curve for a capillary with a  $20\mu$ m i.d. capillary and an electrode spaced  $40\mu$ m from the emitter. Two capillaries with different extractor diameters are tested together.



## **Retarding potential**

 The large energy distribution indicates most likely the presence of a jet and therefore the existence of droplets in the beam.



Need to do mass spectrometry to determine different operation modes and hence thrust

**Fig.** Retarding potential measurement of a capillary with  $140\mu$ m extractor electrode at  $40\mu$ m from the emitter. Measurements were taken for different operation voltages.





Individually addressable chips

- Stable spraying observed for a few minutes before flooding of the chip.
- Observed current of 150nA for a single emitter at 570V.
- New batch of chips in fabrication to solve identified issues



#### Detail of assembled thruster



Cross section of a the thruster with individually addressable extractor electrodes



Assembled thruster with PCB support



## **Technology Readiness Level**

Current development status is TRL2

| Technology Readiness Levels Summary |                                                                                                 |  |
|-------------------------------------|-------------------------------------------------------------------------------------------------|--|
| 1                                   | Basic principles observed and reported                                                          |  |
| 2                                   | Technology concept and/or application formulated                                                |  |
| 3                                   | Analytical and experimental critical function and/or characteristic proof-of-concept            |  |
| 4                                   | Component and/or breadboard validation in laboratory environment                                |  |
| 5                                   | Component and/or breadboard validation in relevant environment                                  |  |
| 6                                   | System/subsystem model or prototype demonstration in a relevant environment (ground or space)   |  |
| 7                                   | System prototype demonstration in a space environment                                           |  |
| 8                                   | Actual system completed and "flight qualified" through test and demonstration (ground or space) |  |
| 9                                   | Actual system "flight proven" through successful mission operations                             |  |



# Conclusions

- The microfabrication process for a small integrated MEMS electrospray thruster has been validated
- Thruster operation has been demonstrated for small arrays, including a new way to obtain thrust modulation.
- A FEM based model to predict the starting voltage of the emission shows a good correlation with the obtained results
- Thruster lifetime remains an unexplored issue. Design improvements such as microchannels at the capillary inlet and chip heating are expected to lead to repeatable capillary filing and spraying.
- We are continuing to develop the thruster in collaboration with partners, and are looking for opportunities to test on nanosatellites





# Questions





## Contact info

R. Krpoun (renato.krpoun@epfl.ch)
H. Shea (herbert.shea@epfl.ch)
Microsystems for Space Technologies Laboratory
EPFL
Rue Jaquet Droz 1
CP 526
CH-2002 Neuchatel
Switzerland
http://lmts.epfl.ch



#### Microfabrication Capillary Wafer – Process flow (1)







Fig. SEM images of capillaries after isotropic/anisotropic etching



#### Microfabrication Capillary Wafer – Process flow (3)





## Microfabrication Extractor – Process Flow (1)





## Microfabrication Extractor – Process Flow (2)





## Microfabrication Extractor – Process Flow (3)





#### Discussion Starting Voltage - Modelling

Equilibrium between surface tension and electrical stress

$$\frac{1}{2}\varepsilon_0 E_a (V)^2 = \frac{2\gamma}{r_a}$$

- $r_a$  Radius of the cone apex
- $\gamma$  Surface Tension
- $E_a$  Electric Field at the apex
- V Voltage
- $\varepsilon_0$  Permittivity of free space
- Linear relation assumed between electric field and applied voltage

$$E_a = \alpha \times V$$
  $\alpha$  – Proportionality factor

Solving for the voltage yields

$$V_{oc} = \frac{1}{\alpha} \sqrt{\frac{4\gamma}{\epsilon_0 r_a}}$$

• The proportionality factor,  $\alpha$ , can be determined by FEM analysis

#### Discussion Starting Voltage - Correlation

- The proportionality factor, α, was determined for different apex radii
- Conic section on top of capillary modeled using a rational quadratic parametric equation.
- Results for a 20µm capillary with 140µm diameter extractor, spaced at 40µm from the capillary shown in table below (measured value 720V)

| Tip radius, nm | Critical Voltage, V | $\alpha$ – factor, m <sup>-1</sup> |
|----------------|---------------------|------------------------------------|
| 0.6            | 745                 | $7.56 \times 10^6$                 |
| 2.8            | 749                 | $3.56 	imes 10^6$                  |
| 12.7           | 751                 | $1.67 	imes 10^6$                  |
| 56.8           | 748                 | $0.79 	imes 10^6$                  |
| 254.5          | 743                 | $0.39 	imes 10^6$                  |
| 1140.6         | 747                 | $0.18	imes 10^6$                   |





Integrated Electrospray Micropropulsion System