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Gravity research topics

• Planets/moons
– Local anomalies
– Evolution of the 

planet/moon: global 
structure

• Combination with 
other measurements
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Basic equations
• Gravity potential describes the gravity field
• Differentiating this potential twice yields the gravity gradient as 

follows:

• The unit of gravity gradient is Eötvös (E): 1E = 10-9/s2

• Gravity potential over a surface is described with spherical 
harmonics:

With P the associated Legendre polynoms, n order, m degree

• Higher orders describe the details
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Sensitivities needed for Moon

At least 1E/rtHz 
is needed
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Power spectral density of 
gravity gradient sensors

Here:
b is the base line between the two probe masses
m is the probe mass
fo is the mechanical resonance frequency

of the differential mode
Q is the quality factor of the resonance mode
βη is the energy coupling factor of the sensor
εA is the sensor noise energy
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Power spectral density of 
gravity gradient sensors

• For a good gradiometer mass and baseline 
should be big

• For use on a satellite, mass & size must be 
small

Miniaturization needed --> MEMS
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MEMS – Concept design
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50µm

0.5mm

MEMS – Concept design
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b=6cm,T=77K,Q=1E5,k=1N/m
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Readout – capacitive

• Possibility to detect small 
deflection has been shown in 
literature: 10-13m/s2/√Hz

• Relative easy integration with 
mechanics

• Same components for 
actuation, which means:
– Readout also applies force 

to masses!
– Same type of plates used 

for force feedback
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Areas on proof mass 
designated for capacitive 
actuation, sensing and 
lateral constraining

Added mass on proof 
mass (gold, 2 cm3)

Mechanical 
constraints 
(leaf springs)

Fram
e

Area designated for 
direct differential 
read out

MEMS – Capacitive sensing & actuaction



13

Thermal influences
• “DC” heating of the sensor: Tmass = Tframe

– Everything expands, C change negligible

• Dynamic heating: Tmass != Tframe

– Frame moves relative to readout: distance 
between spring work point and readout is 
important
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Calculation of model

Springs: l x b x h = 6cm x 50um x 500um
kx=500kN/m, ky=1.38N/m, kz=138N/m
2 clamped-clamped-beam springs per acc.meter

Attached mass: Au: ρW= 19,300kg/m3
l x b x h = 1cm x 1cm x 1cm
Location: 3.25cm from center of sensor
Mass = 87g
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Calculation of model

Q = 100,000
Readout: ∆x = 10e-13 m/√Hz
Temperature: T=77K
Total mass: 87g
Frequency: 1Hz
Baseline: 6.4cm
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Calculation of model

Results:
Brownian 107mE√Hz
Readout 53mE√Hz

Total 119mE√Hz
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Electronics
Goal:
• Acquiring differential capacitance values
• Processing to get accelerations and 

gradients
• Providing feedback control to keep masses 

in workpoints
• Compensate for unmatched systems by 

using electronic negative springs

Electronics will be developed as ASIC 
(Application Specific IC) by SRON
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Conclusions

• For planetairy missions: at least 1E/√Hz 
sensitivity needed

• Proposed design: 119mE/√Hz possible
• Systems need to equal to reject common 

mode accelerations
– Negative spring constants can be used to 

control


