Presentation 6th Round Table of MNT, 9th Oct, ESTEC:

Development of new MEMS components and their maiden space flight on PRISMA 2009

P. Rangsten, J. Bejhed, K. Jonsson, H. Johansson, M. Björklund, and T-A. Grönland

NanoSpace AB SE-751 83 Uppsala SWEDEN www.nanospace.se

Outline

- Intro
- PRISMA mission
- Micropropulsion on PRISMA
- MEMS Isolation Valve
- MEMS Pressure Sensors
- MEMS Pressure Relief Valve
- MEMS Thruster Pod Assembly
 - Thruster, filters and heaters
 - Proportional Flow Control Valves
- Summary

Micropropulsion on PRISMA

About PRISMA

A two spacecraft technology demonstration mission for rendezvous and autonomous formation flying

- RF metrology for Darwin
- Precise orbit determination with GPS
- Green Propulsion and Micropropulsion

The flight experiment

Different methods to evaluate micropropulsion:

- GPS-data
- Reaction wheel response

• RF metrology data in proximity operations Experiments to verify thrust from 10 μ N to 1 mN

Micropropulsion

Micropropulsion system delivered by NanoSpace to the prime contractor Swedish Space Corporation

Cold Gas Micropropulsion System Overview

Schematic Block Diagram

MEMS Components

- Filter
- Isolation valve
- Pressure sensors
- Relief Valve
- Proportional valves
- Micro thrusters

ESTEC, 9th Oct. 2007

Cold Gas Micropropulsion System Overview

The micropropulsion system CAD layout

ESTEC, 9th Oct. 2007

MEMS ISOLATION VALVE

Objectives

To provide perfect isolation between storage tank and feed system (replace a pyro valve)

Requirement

- Must not fail to open
- Must withstand high (MEOP 200 Bar) pressure

MEMS ISOLATION VALVE with integrated filter

- Patent filed in Dec 2005
- "End-to-end" tested using Micropropulsion RTU at 200 Bar Nitrogen
- Burst proof tested up to 500 Bar
- Redundant inlets and outlets
- Replaces pyro valves
- Integrated filter

Developed, manufactured and integrated on PRISMA by NanoSpace

MEMS PRESSURE SENSORS

See also Presens presentation, 8th of Oct

Developed and manufactured by Presens Integrated on PRISMA by NanoSpace

ESTEC, 9th Oct. 2007

Pressure Relief Valve

Objectives

- To act as isolation valve during normal operation
- To act as passive burst membrane
- To act as active one shot valve if pressure builds up in system
- To act as check valve system if opened actively or passively and thus allow continued operation

Requirements

- Burst Pressure: >10 bar
- Cracking Pressure (Check valve): 6 bar

Pressure Relief Valve Passive Burst

Burst Pressure: > 10 bar

ESTEC, 9th Oct. 2007

Micropropulsion System Flight H/W

Pressure Sensor Pressure Relief Valve Isolation Valve

ESTEC, 9th Oct. 2007

MEMS Thruster Pod Assembly

Micropropulsion on Prisma

- Two thruster pods
- Four orthogonal thrusters/pod
- Proportional thrust

ESTEC, 9th Oct. 2007

MEMS Thruster Pod Assembly

MEMS in pod assembly

- Four microthrusters per pod
- Heaters for hot gas mode
- Filters
- Six wafer stack
- Four proportional valves

ESTEC, 9th Oct. 2007

Summary

Several new MEMS components have been developed

- MEMS Isolation Valve including filter
- MEMS Pressures Sensors
- MEMS Pressure Relief Valve
- MEMS Proportional Valves
- MEMS Thrusters

and will be flight demonstrated on Prisma

