RF-MEMS Switches Reliability for Long Term Spatial Applications

A. Tazzoli, V. Peretti, G. Cellere, G. Meneghesso

Department of Information Engineering
University of Padova, via Gradenigo 6/B, l-35100 Padova, Italy
e-mail: augusto.tazzoli@dei.unipd.it
Tel: +39 0498277653 - Fax: +39 0498277699

6th ESA Round Table on MNT for Space Applications

8 - 12 October 2007, NoordwiJk, The Netherlands

Purpose

- Radio Frequency Micro-Electro-Mechanical Systems (RF-MEMS) are becoming more and more interesting for future wireless and wired RF applications
- Light and small redundancy switches in satellite applications
- The reliability of electrostatically actuated MEM switches has been mainly tested only in term of RF performances and cycling, neglecting other reliability issues: ESD, radiation, long term actuation
- We have tested the behaviour of four kinds of MEMS switches under long actuation times, showing how the anchors geometry can impact on the reliability of such devices

Outline

- Introduction
- Devices Description
- Electro Static Discharge sensitivity
- X Ray - Total lonizing Dose effect
- Long term stress characterization
\Rightarrow Meanders shape impact on the reliability
- Conclusions

Introduction

Micro-Electro-Mechanical-System Application

Micro-lenses

Telecoms, BS / Mobile equipment, Defense

Accelerometers

BIO-MEMS
"lab on a chip"

Gyroscopes

HF Resonators

SPDT - Switches

Devices Description

Meander based suspensions - Ohmic series / shunt switch

Devices Description

Straight beam suspensions - Ohmic series / shunt switch

- Surface micromachining process based on electrodeposited suspended gold (membrane layer)
- Low-losses RF signal path (gold layer)
- $1.5 \mu \mathrm{~m} / 5 \mu \mathrm{~m}$ thick beam springs

与•Perforated plate structure with $20 \times 20 \mu \mathrm{~m}$ holes ($20 \mu \mathrm{~m}$ separation)

- Interdigitated topology for actuation electrodes

Ohmic devices DC characterization

Meander based anchors

Straight beams anchorage

$P_{R F}=0 \mathrm{dBm}, f_{R F}=6 \mathrm{GHz}$
$\left|\mathrm{V}_{\mathrm{ACT}}\right| \approx 34 \mathrm{~V}$
$\left|V_{\text {REL }}\right| \approx 20 \mathrm{~V}$

Electro Static Discharge

Transmission Line Pulser

Sensitivity to Electro-Static Discharge TLP between the ACTUATION PAD and GND

Dielectric breakdown observed at low discharge voltage (compared to HBM)

Ref: A. Tazzoli, V. Peretti et al., "Transmission Line Pulse (TLP) Testing of Radio Frequency (RF) Micromachined Micro-Electro-Mechanical-Systems (MEMS) Switches", EOS/ESD Symp. 2006, Tucson, AZ, USA

Sensitivity to Electro-Static Discharge TLP between the RF-INPUT and RF-OUTPUT

Open circuit observed after the failure point

Ref: A. Tazzoli, V. Peretti et al., "Transmission Line Pulse (TLP) Testing of Radio Frequency (RF) Micromachined Micro-Electro-Mechanical-Systems (MEMS) Switches", EOS/ESD Symp. 2006, Tucson, AZ, USA

Total Ionizing Dose - X-rays

The sensitivity to 1Mrad(SiO2) Total lonizing Dose has been evaluated using a $50 \mathrm{keV}, 500 \mathrm{rad} / \mathrm{s}$, X-ray source available at INFN-LNL (Legnaro, Italy).

Tested devices: 30 m.b. + 40 s.b. ohmic switches

Straight beams

| Stiction | $\Rightarrow 50 \%$ | | Stiction | $\Rightarrow 6 \%$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S-parameters degradation | $\Rightarrow 42 \%$ | | S-parameters degradation | $\Rightarrow 24 \%$ |
| Negligible variations | $\Rightarrow 8 \%$ | | Negligible variations | $\Rightarrow 66 \%$ |
| Actuation line damage | $\Rightarrow 5 \%$ | | Actuation line damage | $\Rightarrow 4 \%$ |

Total Ionizing Dose - X-rays

The sensitivity to 1Mrad(SiO2) Total lonizing Dose has been evaluated using a $50 \mathrm{keV}, 500 \mathrm{rad} / \mathrm{s}$, X-ray source available at INFN-LNL (Legnaro, Italy).

- Degradation of the SParameters when actuated (series resistance increase)
- No changes in the actuation voltage
- Recovery after 1 month \rightarrow charge entrapment / redistribution ??
- Extra studies are neededI!

Ohmic switch - Straight beams - $\mathrm{f}_{\mathrm{RF}}=6 \mathrm{GHz}$

TID - Cycling correlation ?

TID induced degradation is very similar to the degradation caused by low voltage cycling

- Similar degradation of the SParameters (series resistance increase)
- Almost no changes in the actuation voltage

Bias conditions DC sweep:

$$
f_{R F}=6 \mathrm{GHz}
$$

Cycling:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{ACT}}=40 \mathrm{~V} \\
& \mathrm{~T}_{\mathrm{ACT}}=250 \mu \mathrm{~S} \\
& \mathrm{~F}_{\mathrm{ACT}}=1 \mathrm{kHz} \\
& \mathrm{P}_{\mathrm{RF}}=0 \mathrm{dBm} \\
& \mathrm{f}_{\mathrm{RF}}=6 \mathrm{GHz}
\end{aligned}
$$

Could radiation be studied as a new accelerating factor?

Application: Redundancy Switch

Reliability is a major issue for any satellite, since it is almost impossible to foresee any repair work once the spacecraft has been launched. This approach is often not sufficient to meet the required mission lifetime (15 years) for today's telecommunications satellites

Switch \#1

Antenna

Redundancy Switch

Excerpt from ESA tender

"High Reliability MEMS Redundancy Switch" (2006):

The MEMS Redundancy Switch shall fulfil the following specifications:

Parameter	Specification
Frequency band	Ku-band
Bandwidth	Covering whole frequency band
Input match (50 Ohms)	-15 dB max
Output match (50 Ohms)	-15 dB max
Insertion losses	0.5 dB max (unpackaged)
Isolation between channels	50 dB min
Maximum input power	10 dBm
Reconfiguration time	1 s max
Operating temperature range	$-20^{\circ} \mathrm{C} /+55^{\circ} \mathrm{C}$
Storage temperature range	$-50^{\circ} \mathrm{C} /+125^{\circ} \mathrm{C}$
Lifetime (predicted)	15 years min (with 1000 actuation max)

Lifetime shall not be affected by "hot switching" which happens when the switching is done while the RF power is still applied (0 dBm max).

Long Term Actuation

DC Stress

After 4 hours of DC actuation, meander-based devices take up to 1 hour (and beyond) to de-actuate!!

Long Term Actuation DC Stress

Meander-based anchors

$\mathrm{V}_{\mathrm{ACT}}=40 \mathrm{~V}$
$P_{\text {RF }}=0 \mathrm{dBm}$
$\mathrm{f}_{\mathrm{RF}}=6 \mathrm{GHz}$

Similar behaviour also with low RF power applied (-10dBm, -30dBm)

Good RF performances, but these devices are completely useless as redundancy switches!

Long Term Actuation

DC Stress

Straight beams anchorage

$\mathrm{V}_{\mathrm{ACT}}=40 \mathrm{~V}$
$\mathrm{P}_{\mathrm{RF}}=0 \mathrm{dBm}$
$f_{R F}=6 \mathrm{GHz}$
After 72 hours of continuous actuation, the switch suddenly releases itself

Very promising for redundancy applications!

Conclusions

- RF-MEMS switches: very good performances, but a "true" complete characterization is needed for spatial applications / future commercialization
- The sensitivity to $1 \mathrm{Mrad}(500 \mathrm{rad} / \mathrm{s})$ X-rays TID could be extremely critical for RF-MEMS switches
- TID \leftrightarrow Cycling correlation??
- De-actuation time could be a critical factor, especially for redundancy switch applications
- Straight beams anchors offer better behaviour than meander-based anchorage (improved TID robustness, cycling, and de-actuation time)

