

ENDORFINS: ENabling Deployment Of RF MEMS technology IN Space telecommunication.

P. Czarnecki^{1,2}, P. Soussan¹, X. Rottenberg^{1,2}, P. Muller¹,
P. Nolmans¹, P. Ekkels^{1,2}, W. De Raedt¹, H.A.C. Tilmans¹,
R. Puers², O. Vendier³, L. Marchand⁴ and I. De Wolf^{1,5}

¹IMEC, Leuven, Belgium
 ²E.E. Dept. of KULeuven, Leuven, Belgium
 ³Thales-Alenia Space, Toulouse, France
 ⁴ESA/ESTEC, Noordwijk, The Netherlands
 ⁵MTM, KULeuven, Leuven, Belgium

Outline

- ENDORFINS
- Capacitive RF MEMS switch
- Failure modes
- Materials
- Design
- Processing
- Results
- Conclusions

ENDORFINS (1)

Title:

 ENabling Deployment Of RF MEMS technology IN Space telecommunication.

Objective:

- Perform an in-depth assessment of the reliability and related failure modes of RF-MEMS, in view of their deployment in space and improve this reliability (for switches) through processing optimization.
- 2 years project, started in August 2005.

ENDORFINS (2)

Purpose:

- study the possible applications in space
- study the reliability issues and failure modes that prevent the deployment of RF-MEMS in space
- define corrective actions to improve the reliability with focus on processing steps and materials used (focus on RF-MEMS capacitive switches), taking into account packaging.
- apply these corrective actions (where possible) to the processing and investigate their effect on the reliability.

Capacitive RF MEMS switch

dwijk, The Ne

imec

FMEA: ENDORFINS approach

FMEA: Failure Mode & Effect Analysis

- List all (theoretically expected) failure mechanisms
- Assigned severity (S) and occurrence (O) number (1-10) and calculate Priority Number: PN=S*N
- Select failure mechanisms with highest PN to study
- Identify processing steps and test structures (design) to optimize reliability and prevent failures

Failure modes: FMEA

	Potential Failure Mechanism	Sev	Failure Defect	Failure Mode	Occ	P N	Den itte	
		_	Chiefing to better allocated a block	Duiff in Citaurung duiff in Duill in			4. Electric Field Ch	Die
1	capacitive switches		permanent (charges flow away when	and Pull-out voltages, Dead			1. Electric Field Cr	
		8	charging cause is taken away).	device	10	80	2. Air-gap Breakdo	
							3. Electron emissio	100
							4. Radiation	C2
2	Micro welding		Stiction	Dead Devices, drift in contact resistance, anomaouls switching			1. soft metals com welding)	(
	(ohmic switches and capacitive switches with contact metal on dielectric)			behaviour (temporary stiction).			2. high current thro	
	······	9			7	63	contacts (often at	
							welding)	
	T induced electric defense after of the		No	Chiff of all adding to account on			A Different Theorem	
3	I-induced elastic deformation of the bridge		bridge (is restored when T-source is	(pull-in/pull-out V, capacitance,			1. Different Therm Coefficients (CTE)	
	(ohmic and capacitive switches)		removed);, possibly stiction if large deformation (to bottom electrode or top	contact R); change of mechanical properties			2. Environment Te	
		7	of cavity if packaged).	medianida propenses	7	49	3. Power RF Signa	
							Temperature	
							4. Non uniform ten	ГЛі/
4	Vastic deformation of the bridge		Permanent deformation of the bridge,	Shift of electrical parameters			1. Creep	
	(ohmound capacitive switches)	7	box melectrode or top of cavity if	contact R,); change of	7	49	2. Thermal induce	
			packageu;	mechanical properties			properties (for 1>1	
6	Structural Short (en ctrical and non-		Particles, shorted metals, contamination, remains or perificial	Changes in electrical parameters, dead devices			1. Contamination; sacrificial layer ma	l (nr
	(abmin and are reflive guilder)		layer, stuck bridge	parameters, dead devices			2 Wear Particles	
	Comme and capacitive sources	9			5	45	2. Eracture	
							4. Larenz Forenz	Icar
							4. Lorenz Porces	
-	Condition France		Official and	Number of Street Street			5. Shocks	
°	Capillary Porces	10	Suction	Dead device		40	incorrect release st	ICOL
	(ohmic and capacitive switches)							001
7	Fusing	10	Opens, roughness increase	Dead Device	4	40	High RF power pul	
	(ohmic and capacitive switches)		Destroy belden and being	No. of destro				
°	Fracture		Broken bridges and ninges	Dead device			1. Fatigue	-
	(onmic and capacitive switches)	10			4	40	2. Brittle materials	-
							3. High local stress	
9	Dielectric breakdown of the insulator.	9	Dead device, possibly stiction	actuation electrode	4	36	1. ESD	
	capacitive switches)						2. Excessive charg	l de
10	Corrosion		Dendrites formation, oxidization, changes in color	Degradation of electrical and mechanical properties, shorts			1. Presence of wat (chemical reaction	
	(ohmic and capacitive switches)	7			5	35		
							2. Corrosive gases	pri
11	We ar		Curface modifications Darticles	Charles apages shift of algorithms			4. Cliding Rough S	
	Fristian		Ourrace modifications, Particles (Debris), Stiction	parameters, contact resistance			r. Sirung Kough S	/ .
1	Fratting corregion	8		shifts	4	32		l (nh
1	(abmic and can active cottable)							
42	Creen		Deformation of the bridge in time	Electrical and mechanical			High petal strang	
12	(ohmic and can active soltches)	6	s crossingtion of the bridge in alle	parameters shifts	5	30	temperatures, cree	SW/
40	Equivalent DC Voltage		Self biasing Stiction	Apomalous suitebing behaviour			High RE power in	
	Cohmic and can active rottehan)	7	Sea siasing Section	changes in electrical parameters	4	28	collapsing or stiction.	
10	Loronz Forons		Solf Bissing Station	Anomalous geitabing behaviour			1 High PE power in	we adjacent lists
17	(ohmic and can active soltober)	7	Sen blashig Section	changes in electrical parameters	4	28	2. External Macrotio	Field
15	Whisker formation		Bumps in metal boles in insulator on	Anomalous down canaditation or			High compressive dr	ess in metal
10	(ohmic and can active mitched)	7	top of metal layers,	contact resistance, possible	4	28	resulting in grains ex	trusions; might be
	(onnio and capacitive sivitches)			increase of charging sensitivity			enhanced by T-steps	
16	Fatigue		Broken bridges and hinges, cracks, microcracks, deformation of the bridge	Electrical and mechanical properties shifts, dead devices			Large local stress va motion of parts (inter	riations due to Ided or due to
1	(ohmic and capacitive switches)	8			з	24	vibrations or thermal	cycles). Enhance
1							surfaces are rough	re present of
17	Electromigration		cracks, opens, thickness changes (mass	Increase of resistance, opens,			1. High current densi	ty in metal lines
	(ohmic and capacitive switches)	8	transport) in metal lines	shorts	2	16	enhanced by too thin stens.	and/or narrow, an
18	Van der Waals Forces		Stiction	Dead device			Large very smooth a	nd flat surfaces in
	(ohmic and capacitive switches)	10			1	10	close contact	
	,						1	

Dielectric charging (capacitive switches)

Micro welding

(ohmic switches and capacitive switches with contact metal on dielectric)

T-induced elastic deformation of the bridge

(ohmic and capacitive switches)

Round Table, 2007, Noordwijk, The Netherlands © imec restricted 2007

Failure modes: descriptions

- Micro welding:
 - surface roughness increase

after metal-metal contact

J. DeNatale, Transducers '03, Boston, June 2003

T-induced deformation of the bridge

Materials

- Substrate
 - glass (AF45)
 - high resistivity Si
- Bottom metal
 - optimized for low roughness
 - no whisker formation
- Dielectric
 - TaO (two recipes)
 - AIO (native)
 - AIN (two recipes)
- Bridge
 - AlCu, different thickness

9

Design

- RF performance neglected.
- MIM capacitors and simple beams.

- Fully processed structures.
- Dedicated test structures.
- Many equal devices for reliability study.

Processing

Results (1)

- RUN1: •
 - bottom metal

Devices

- dielectric

- simple test structures 15 -10 -5 -- uniformity 0 -5 -10 -15 - reproducibility 0 U -20 -10 10 20 narrow wide n beams beams narrow V_{pi} [V] 40 wide 10 -30 9 20 8 10 7 0 6 ¹² V_{pi} [V] 7 10 6 8 9

imec

P. Czarnecki et al., ENDORFINS ... 6th ESA Round Table, 2007, Noordwijk, The Netherlands © imec restricted 2007

11

Results (2)

RUN2 •

13

Results (3)

- RUN3
 - First packaging tests: no beam changes.
 - Further lifetime tests of packaged switches.

Conclusions

- Taking the reliability into account from the beginning:
 - decreases number of possible mistakes
 - saves time
 - provides better understanding of the physics behind failures
- Promising results.

• Thank you.

