

Performances and Reliability of Dielectric Less Capacitive MEMS Switches

Pierre BLONDY, Arnaud POTHIER, Aurelian CRUNTEANU

XLIM-UMR CNRS 6172,

Faculté des Sciences, Limoges, F-87000, France

www.xlim.fr (all french website...)

Reliability of capacitive MEMS Switches

Conventional MEMS switch

Typical applied Voltage >20 Volts over 0.2 μ m Charging is the main failure mode of capacitive MEMS switches

• Switch C(V) characteristic relies on the actuation mechanism

Automated test bench

Interface

Typical test sequence

Institut de recherche

RF-MEMS capacitive switches

- Charge trapping effects:
 - Pull-in voltage drift
 - Failure:
 - stiction
 - Failure to actuate
- Solutions:
 - Bipolar control voltage -> stiction anyway
 - Dielectric layers improvements
- Charge trapping is a fundamental problem for RF-MEMS:

– Low capacitance / area -> V=Q/C -> <u>a small amount of Q = a lot of V</u>

• How to improve contrast??

Higher tip = low up state capacitance

Down state

Moderate height = moderate pull in voltage

Overall, the contrast is higher than for conventional structures, and voltages remain the same

Design

Used mechanical structure

Main advantages:

- High initial gap (controlled with internal stress)
- Strong restoring force
- Moderate actuation voltage (50-60V)
 - Temperature stable

Proposed structure

• Cantilever

Proposed structure

• Cantilever

Proposed structure

• Cantilever

Down state

Institut de recherche

Voltage acceleration

¹Long term' behaviour

Duty Cycle Variations

Cycling example

• Cycling 8.10⁸ cycles – square 10 KHz 70 Volts 30% duty cycle

Effects of microwave power

 Cycling using a triangular waveform (10KHz cycling – duty factor less than 20%) ~up to 1 Billion cycles

Initial influence of power on charge trapping

Cycling example

Microwave power acceleration 1W CW (1KHz cycling – 50% duty cycle)

• 2 Watts 2 Billion cycles have been achieved on the same type of switch

• Measured voltage Drift. 60 Volts applied DC

- Switch is functionnal, and the drift is less than 1 Volt/day
- The voltage drifts more in the first day than the next 30 days
- The voltage drift is more in the first minute than in the last 10 days

- Duty cycle is one of the key acceleration factors for these switches i.e. going from 50% to 90% duty cycle will result in 2 orders of magnitude of lifetime improvement.
- RF-MEMS reliability is strongly depending on the application
- More acceleration factors needed -> PoF work needed
- Switches were sent to another C(V) test bench. No voltage drift was observed.
- It is urgent to specify very detailed procedures for these measurements and 'calibrate' reliability test benches

- Dielectric less switches are very promising for RF-MEMS applications
- Reliability:
 - Accelerating factors have been identified:
 - Duty factor
 - Applied voltage
 - Temperature
 - ~1 Billion cycles 30% duty factor 70 V square positive signal less than 5 Volts drift in Vp
 - 1 Watt 1 Billion cycles -> acceleration factor observed
 - 1 month in the down state achieved
- Voltage drift effects... Much less than conventionnal devices

Acknowledgements / Mercis

- TAS
- Support of the french MoD
- ESA