

ESA Contract #20267-06-NL-JA

Modular and Low-Cost Earth Sensor for LEO and GEO Applications

N. Scheidegger, H. Shea, E. Rugi-Grond, T. Weigel, L. Carrara and E. Charbon

> Prof. H. Shea EPFL STI IMM LMTS P.a. Université de Neuchâtel Rue Jaquet-Droz 1 Case postale 526 CH – 2002 Neuchâtel herbert.shea@epfl.ch

New Concept for an Earth Sensor:

Earth Sensor based on imaging airglow with an array of single photon counters (SPADs):

- Airglow: Permanent light source in the visible (762 nm)
- Low-power, uncooled, sensitive detector
- Compact and low-cost earth sensor
- Angular accuracy: 5° LEO, 0.6° GEO
- > primary applications:
 - Earth Presence Failure detector for Telecom missions using star trackers-based AOCS (GEO)
 - Initial acquisition for Earth observation missions (LEO)
 - Back-up sensor for Earth-pointing safe modes (either in LEO or GEO)

Contents

1. Airglow Emission

2. Earth Sensor Instrument Design

Airglow Emissions

Airglow Emissions seen from GEO

Expected photon flux in a GEO due to airglow emission [photons/pixel/s] for an aperture of Ø8 mm and a FOV of 0.16°/pixel

		At zenith	At limb	
557.7 nm O(¹ S) line				
	At night	6 - 64	70 - 640	
	At day	200 – 2 k	2 k – 26 k	
	Aurora perturbations	160 – 160 k	80 – 80 k	
762 nm O ₂ (0-0) A-band				
	At night	500 – 2 k	6 k – 26 k	
	At day	26 k – 260 k	370 k – 3.2 M	
	Aurora perturbations	30 – 1 k	10 – 500	

We choose the $O_2(0-0)$ A-band at 762 nm rather than the $O(^1S)$ line at 557.7nm

✓ Strongest airglow line (50 times stronger than 557.7nm line)

- ✓ Weaker perturbations by aurora effects (only 10-30% of the nightglow for zenith measurements)
- Not visible from Earth (less data available)

Max 24:00 SLT

Max 06:00 SLT

Based on UARS and ODIN satellite data

Existing Airglow Data

- HRDI/WINDII on the UARS satellite
 - Limb measurements from 1991 to 1999
 - Covers almost all daylight and nocturnal time
 - Data product:
 - O₂(0-0) A-band volume emission rate depending on altitude, latitude, local solar time and date
- OSIRIS on the ODIN satellite
 - Limb measurements since 2001
 - No detailed data on $O_2(0-0)$ A-band emission available
- Rocket measurements (ex. ETON project)
 - Single zenith measurements
 - Data product:
 - O₂(0-0) A-band volume emission rate depending on altitude, latitude, local solar time and date

Earth Sensor – GEO and LEO Applications

- ✓ Same wavelength band
- ✓ Same optical sub-system (same telescope)
- ✓ Same power and data interfaces
- ✓ Similar algorithms
- Different optical geometry (1 vs. 3 apertures)

Mechanical Design for GEO Application

- Materials:
 - titanium for elements defining the optical path
 - aluminium for the other components (except PCBs) •
- Mass:
 - Tube
 - 200 g ± 20% Motherboard stack
 - Housing
 - **Total Mass** •

- 200 g ± 20% 200 g ± 20%
- 600 g ± 20%

PCB with main electronic components for image processing

œrlikon

space

Quantum Architecture Group

Mass: Tubes

•

Tubes 600 g ± 20%
 Motherboard stack 200 g ± 20%

3 daughterboards instead of 1

3 "tubes" instead of 1

1 single mainboard

- Housing $400 \text{ g} \pm 20\%$
- Total Mass 1200 g ± 20%

Mechanical Design for LEO Application

Same optical system for the GEO and LEO application

Optical Design

- Main Parameters
 - FOV: 20 °
 - Aperture: 8 mm
 - Focal length: 10.88 mm
 - Pixel pitch: 30 µm
- Mass:
 - All Lenses: 14 g
 - Barrel: 13-18 g

space

Filter Design (762 nm)

Electrical Design

space

Single Photon Avalanche Diodes

p shallow well

p substrate

Quantum Architecture Group

cerlikon

space

SPADs – Functional Principle

- Dead Time 100 ns
- Photon Detection Probability 40 % (@550 nm, 4% 760 nm)
- Fill-Factor 5 %
- Dark Count Rate 280 Hz

Algorithm

Original Image

Algorithm

17

Hough Algorithm with Adaptive Accumulator Array

- Objectives
 - Reduce memory requirements and number of operations
 - Increase flexibility of the earth sensor by increasing the range of acceptable earth sizes and the zone where the earth centre can be found
- Acquisition Phase : Coarse determination of the zone where the earth centre is in the image
- Tracking Phase: Detailed determination of the earth centre position

Algorithm

Test Images for the Algorithm Testing

IRES EPF LES TECHNOLOGIES SPATIALES

20

Test Images for the Algorithm Testing

airglow signal at solar terminator

max airglow signal

min airglow signal

EPFL LABORATOIRE DES MICROSYSTÈMES POUR LES TECHNOLOGIES SPATIALES

IRES

e airglow signal at solar terminator with moon

min airglow signal, higher satellite altitude

max airglow signal, earth not centred

min airglow signal, earth not centred

Preliminary Results

 (computed performance based on noise figures for SPADs, e.g. dark count rate)

Expected Performance

Error source (mean error)	Maximum Expected Error (e _i)	
Optics aberrations and correction for distortion	1.FOV _{pixel} = 0.16 °	
Algorithm (for images completely within the FOV of the instrument)	1.FOV _{pixel} = 0.16 °	
Smear (pointing stability during measurements)	LEO: 1.FOV _{pixel} = 0.16 ° GEO: 0.05 °	
Angular incertitude of the airglow	LEO: 1° GEO: 0°	
Oblatness of the earth	LEO: 1° GEO: 0°	
Worst case error $e_{worst_case} = \sum_{i} e_{i}$	LEO: 2 ° + 3 ·FOV _{pixel} = 2.5 ° GEO: 0.05 ° + 2 ·FOV _{pixel} = 0.4 °	
Targeted accuracy	LEO: 5 ° GEO: 0.6 °	

œrlikon

space

SwissCube: Technology Demonstrator

1kg cubic satellite (Cubesat) with a volume of 10 x 10 x 10 cm³

Science Mission

- Take measurement of the airglow to validate the airglow model developed at LMTS
- Demonstrate feasibility of using airglow as basis for a low-cost earth sensor

http://swisscube.epfl.ch

Quantum Architecture Group

œrlikon

space

SwissCube Payload

- Triplet design with off-the-shelf components
- FOV 18.8° x 25°
- Resolution 0.16°/pixel
- Baffle for a solar exclusion angle of 30°
- Filter with a central wavelength at 767 nm and a bandwidth of 20 nm

Conclusion

- Airglow: Permanent, visible band
- Detector with high sensitivity
- ✓ Same operation at night and day
- Modular instrument design for GEO and LEO applications

Thank you for your attention!

