The attitude control sensor for microsats

Multi aperture baffled startracker

TNO | Knowledge for business

6th ESA round table on MNT for space

Attitude control sensors for microsats

- Sunsensors (small and getting smaller)
- Magnetometers (small and getting smaller)
- Gyro's (big but getting smaller)
- Starsensors getting smaller but **BIG** baffle

Startrackers

- Main attitude sensors for many satellites
- Baffle is the largest mechanical component
- Small field of view
 - Small baffle
 - Large optics for high accuracy (dim stars needed)
 - Reduced roll accuracy
- Wide field of view
 - Worse sun exclusion angle
 - Smaller optics
 - Better roll accuracy
 - Requires high pixel count detector for large accuracy

ESTEC, 10th october 2007

Multi aperture baffled startracker (patented)

- Small optics
- High accuracy
- Largely reduced baffle size
- Sun Blinding of one aperture acceptable (100% availability)
- Roll accuracy can be as good as X,Y accuracy
- Small star catalog (brightest stars only)

Autonomous versions can be compact

- Autonomous power supply
- Wireless data interface
- Orthogonal apertures
 - Minimum baffle size
 - Balanced accuracies
- Transmission optics

FOV degrees

1cm² aperture enough @ 15° FOV for 5 stars average
1 minute of arc or less obtainable

6

ESTEC, 10th october 2007

Integration into micro or even nanosats possible

- Single cubesat unit
- Two units for science paylaod
- Major components under development within

the los Cube - extendable solar parels. -ISS -MABS - NProp + C6G - UWB - GPS Sol 2 x TS = bo cm = resp 60x0,150= 9 Wx256=2254 Thrusters

Integrated Optical Attitude Control Sensors IOpACS

Several combinations possible

- 3 startrackers and one high accuracy sunsensor (using a sun attenuation filter for one of the apertures)
- 3 startrackers and one earthsensor (increasing the FOV for one of the apertures
- 3 startrackers one thermal earthsensor (adding a microbolometer camera)
- 4 startrackers 1 earthsensor (visible or thermal) and 4 sunsensors
- Reduced number of interfaces
- Increased autonomy and COTS approach likely

ESTEC, 10th october 2007

Integrated sensor system on basis of MABS

- Four startracker ports (100% availability)
- Four sunsensor (semi hemispherical coverage)
- I Earth sensor
- Compact (r=10cm h=10cm)
- Accurate (5 arc seconds)
- Cost effective

MABS Based systems Grown up performance for small satellites.

IOACS mechanical assembly

Mirrors in central structure

- stiffener plate supports mirrors and detector circuits
- signal processing on second layer

Summary of IOACS properties

- Accurate (order of 5")
- stable
- Balanced accuracy's
- hemispherical field of view for sunsensors
- sun blinding tolerant
- compact
- rigid
- cost effective recurring production

MABS Based systems Grown up performance for small satellites.

11 6th ESA round table on MNT for space

ESTEC, 10th october 2007

Thank you for your attention.

Johan Leijtens

+31 15 269 2191 johan.leijtens@tno.nl Kees de Boom

+31 15 269 2163 kees.deboom@tno.nl

Working towards smaller systems.

