Combining Silicon-MEMS and Direct LIGA for Future MEMS Applications in Space

Fettig, R.; Felix, C; Pepe, C; Vieira, I.; Teodoro, P.; Mesquita, D.
LusoSpace, Lisbon, Portugal

Schulz, J.
µicroworks, Karlsruhe, Germany
Combining Silicon-MEMS and Direct LIGA

Abstract

MEMS devices based on silicon process technology are state of the art for many applications and the technology is readily available as a foundry service. In both Silicon On Insulator and polysilicon processes it is possible to produce typical MEMS features such as electrical drives and readouts, elastic and friction bearings and optical mirrors. Optical mirrors are always produced horizontally and require a metal deposited on a mirror quality semiconductor or insulator surface and are usually sensitive to bending with changing temperature due to difference in the coefficient of thermal expansion. Great efforts have been put into the possibility to set up vertical mirrors in polysilicon devices by rearranging mirrors that were horizontally produced. Devices produced that way remain complicated and fragile and have a low package density.

With a LIGA process using synchrotron x-rays on the other hand, it is possible to produce monolithic devices with vertical sidewalls of mirror quality. These are electrodeposited into structures produced lithographically. Usually gold or nickel is used as a metal. As it is difficult to integrate other MEMS features as drives and bearings into LIGA parts the combination of silicon MEMS and metal LIGA represents the potential to create a new class of devices with both vertical and horizontal mirrors in a dense package.

As gold has a density that is more than eight times larger than that of silicon, it can be of advantage to use it in MEMS devices that require a large mass. Especially if the large density has to be combined with extreme dimensional accuracy like in a MEMS reaction wheel the combination of gold LIGA and silicon MEMS could enable completely new devices.

We will present the status of our work to develop the technology to combine these processes. The work includes dealing with issues of integrating both technologies such as the creation of an appropriate plating base and mask alignment during lithography. It also comprises defining a first set of design rules and defining a technology demonstrator.
Combining Silicon-MEMS and Direct LIGA

• Introduction
• (Direct) LIGA at Karlsruhe
• Available Foundry services
• Combination
• Applications
• Issues
• Next steps
LusoSpace is a technology manufacturer of advanced and innovative space technology focused on:

- AOCS hardware (Attitude and Orbit Control System)
- GNC software (Guidance, Navigation and Control)
- Components Qualification
- Laser Systems & Optoelectronics
- Space Electronics
Microwork stands for a new level of maturity of LIGA-technology

- Reliability
- Repeatability
- Q-Standards
- Transfer to SME
- FELIG
- MODULIGA
- X-ray Be-Masks
- Second Source
- LIGA 4H
- Automation for
 - Cost-Reduction
 - Increased Throughput

1986 bis 1998
1998 Sep 05
2008

Haute Couture
LIGA-Roadmap with spin-off from FZK
Prêt à porter
Combining Silicon-MEMS and LIGA combines the best of two worlds:

Si-MEMS stands for versatility because of:
• Easily integrated drives and sensors
• the wide range of processes and materials that can be used
• simple wafer and die level handling
• Integrated CMOS
• Easily integrated drives and sensors

LIGA gives
• The highest available aspect ratios for structures and gaps
• Mirror quality sidewalls
• Metals with unique mechanical and electrical properties
Combining Silicon-MEMS and Direct LIGA
Direct LIGA at Karlsruhe

Properties of x-ray-LIGA structures

- Any lateral geometry
- Roughness of sidewall: Ra~30nm
- Verticality: 0.1μm/100μm (PMMA)
 0.3μm/100μm (metal)
- Height range: 10 bis 2000μm
- Height control: ±10μm

Available metals: Ni, NiCo, Au, hard Au
Combining Silicon-MEMS and Direct LIGA
Direct LIGA at Karlsruhe

- Thickness of resist: 400 µm
- 10 µm
- 200 nm
Combining Silicon-MEMS and Direct LIGA
Direct LIGA at Karlsruhe
Combining Silicon-MEMS and Direct LIGA
Direct LIGA at Karlsruhe

LIGA-Wobble-Motor

- Stator
- Rotor
- Stop
- Mirror
- Electric line
- Bearing journal
Combining Silicon-MEMS and Direct LIGA
Direct LIGA at Karlsruhe
Combining Silicon-MEMS and Direct LIGA
Direct LIGA at Karlsruhe

Excellent sidewall verticality

Change of diameter less than 7µm over 2.3mm → 0.33µm/100µm

![Graph showing measurement results]
An increasing number of European foundries offers MEMS services, most of them a poly-Si surface micromachining and a SOI bulk micromachining process:

Colibys
Microfab,
X-fab,
Tronic,
STMicrosystems,
Silex,
MEMScap

MEMScap offers as a unique feature a shared wafer program for both p-Si MEMS and SOI MEMS. We used their process flow and design rule as a baseline.
Combining Silicon-MEMS and Direct LIGA
How to combine LIGA with Si-MEMS

• Hand assembly
 - State of the art, examples: gears, watch parts,..

• On wafer/on die processing
 - Resist is applied to Si-MEMS in intermediate or final state
 - Exposure, development electroplating and stripping are performed on device

• Wafer/die transfer
 - Resist is applied, exposed developed and electroplated on carrier substrate
 - Structures are transferred as a whole from carrier wafer or as resist/structure slice to the Si-MEMS part
Combining Silicon-MEMS and Direct LIGA
How to combine LIGA with Si-MEMS

Starting wafer patterned but unreleased, Perhaps backetched

Application of resist, exposure

Electroplating, stripping

Extra carrier, coated, exposed developed

Electroplating, planarization, bonding to patterned wafer

Carrier removed, resist stripped ready for backetch and release

Red: Si, Blue: Si, Black: SiO₂, Yellow: Au, Grey: Resist, Light Blue: Carrier
Combining Silicon-MEMS and Direct LIGA

Applications

- Vertical optical elements
 - Single mirror
 - rooftop mirror
 - Cornercube mirror
 - Focusing mirror
 - Wavefront dividing beamsplitters
 - Reflective gratings

- Drives
- Suspensions
- Larger probe mass devices
 - Gyroscopes
 - Reaction wheels
Combining Silicon-MEMS and Direct LIGA Applications

- Vertical optical elements
 - Single mirror
 - rooftop mirror
 - Cornercube mirror
 - Focusing mirror
 - Wavefront dividing beamsplitters
 - Reflective gratings
- Drives
- Suspensions
- Larger probe mass devices
 - Gyroscopes
 - Reaction wheels
Combining Silicon-MEMS and Direct LIGA Applications

- Vertical optical elements
 - Single mirror
 - rooftop mirror
 - Cornercube mirror
 - Focusing mirror
 - Wavefront dividing beamsplitters
 - Reflective gratings

- Drives
- Suspensions
- Larger probe mass devices
 - Gyroscopes
 - Reaction wheels
Combining Silicon-MEMS and Direct LIGA Applications

- Vertical optical elements
 - Single mirror
 - rooftop mirror
 - Cornercube mirror
 - Focusing mirror
 - Wavefront dividing beamsplitters
 - Reflective gratings

- Drives
- Suspensions
- Larger probe mass devices
 - Gyroscopes
 - Reaction wheels
Combining Silicon-MEMS and Direct LIGA Applications

- Vertical optical elements
 - Single mirror
 - rooftop mirror
 - Cornercube mirror
 - Focusing mirror
 - Wavefront dividing beamsplitters
 - Reflective gratings
- Drives
- Suspensions
- Larger probe mass devices
 - Gyroscopes
 - Reaction wheels
Combining Silicon-MEMS and Direct LIGA Applications

Reaction wheels: Simplified governing equations:

Momentum of Inertia:
\[J = \frac{1}{2} m r^2 = \frac{1}{2} \pi \rho d r^4 \]
For an array of \(n^2 \)
\[J_{\text{total}} = \frac{1}{n^2} \pi \rho d a^4 \]

Angular momentum \(L = J \omega \)
Stored energy \(T = \frac{1}{2} J \omega^2 \)

Everything speaks for large \(\rho, d \) and \(r \)

Open issue: friction losses \((\omega^x) \), bearing requirements \((d/r) \)
Combining Silicon-MEMS and Direct LIGA Applications

Reaction wheel: Momentum availability vs demand

Potential sample parameters

Configuration #1:
- 100 μm diameter, 2 μm thick Polysilicon + 0.5 μm thick Nickel
- Square matrix of 1, 100 and 2 500 elements
- Overall device size a of 0.2, 2.0 and 10 mm

Configuration #2:
- 500 μm diameter, 2 μm thick Polysilicon + 100 μm thick Nickel
- Square matrix of 1, 25 and 100 elements
- Overall device size of 1.0, 5.0 and 10 mm

Configuration #3:
- 1 000 μm diameter, 2 μm thick Poly-Si + 500 μm thick Nickel
- Square matrix of 1, 25 and 625 elements
- Overall device size of 1.0, 5.0 and 25 mm

Potential mission parameters

- **Large-Sat:** 4 m / 2000 Kg
- **Medium-Sat:** 3 m / 750 Kg
- **Mini-Sat:** 2 m / 300 Kg
- **Micro-Sat:** 0.6 m / 50 Kg
- **Nano-Sat:** 0.25 m / 5 Kg
- **Pico-Sat:** 0.1 m / 0.5 Kg
- **Femto-Sat:** 0.05 m / 0.1 Kg
Combining Silicon-MEMS and Direct LIGA Applications

Reaction wheel: Momentum availability vs demand

Precision Pointing & Agility

Communication / Navigation

Satellite Mass Category

Momentum [N.m.s]
Combining Silicon-MEMS and Direct LIGA

Applications

Reaction wheel process: die transfer/wafer bonding

Advantages:
• Full in plane accuracy
• High wafer-wafer alignment accuracy

Problems:
• Bearing
 - Friction
 - Gas
 - Magnetic
 - Ball
• Bonding

Si Si SiO₂ Au Resist Carrier

Combining Silicon-MEMS and Direct LIGA Applications
Combining Silicon-MEMS and Direct LIGA
Issues and potential solutions

- Plating base
 - Doped Si,
 - Cr, Au
- Alignment
 - wafer level
 - die to carrier
- X-ray dose on CMOS
- CTE stress
 - Stress relieve structures
- Delamination
 - Adhesion layers (Cr-Au)
 - Anchoring
 - Press fit inside housing
- Other reliability issues
Combining Silicon-MEMS and Direct LIGA
Issues and potential solutions

- Plating base
 - Doped Si,
 - Cr, Au
- Alignment
 - wafer level
 - die to carrier
- X-ray dose on CMOS
- CTE stress
 - Stress relieve structures
- Delamination
 - Adhesion layers (Cr-Au)
 - Anchoring
 - Press fit inside housing
- Other reliability issues
Combining Silicon-MEMS and Direct LIGA

Next steps

- Decide on foundry for on wafer processing
- Fix process flow
- Establish Layout for:
 - Mirrors
 - Standard comb drives
 - Vertical combined comb drives
 - Other devices
- Run process and analyze results
- Goal: definition of a standardized process with design rules and standard features
- Find partners for wafer/die transfer process