Development of MEMS SOI microinertial components for small autonomous vehicles accelerometers, gyroscopes and magnetometers

D.O.King, M.E.McNie, K.M.Brunson, A.L.McClelland, P.C.Stevens

Micro Nano Technology Business Group Optronics

10th October 2007

www.QinetiQ.com

Contents

- 01 Introduction
- 02 Technology
- 03 Inertial Components
- 04 Integration
- 05 Conclusions

01 Introduction

www.QinetiQ.com

About QinetiQ

QinetiQ

QinetiQ is a leading international Defence and security technology company

Founded in 2001, from the UK's national Defence laboratories, the company has **6 decades of experience** in delivering cutting-edge technology

www.QinetiQ.com

QinetiQ MEMS Introduction

Provider of custom military & commercial MEMS solutions

- · Experienced, integrated team of about 30 staff
 - Supported by leading design & prototyping facilities
 - Broad applications base & stable processes
 - Smart sensors, inertial, optical & IR, RF & bio-MEMS
- Access to pan-QinetiQ specialist teams

Key Capabilities

- MEMS design and modelling
- Electronic design (PCB / MCM / ASIC)
- Microsystems with embedded processing
- Microstructure fabrication (ISO9001)
 - Legacy CMOS line in class 10/100 clean room
 - MEMS-specific tooling including:
 - DRIE, XeF2 etch, PECVD silicon, oxide & nitride
 - Double-sided mask alignment
 - Critical point dryer
 - Wafer level packaging
 - Advanced metal CVD
- Advanced characterisation and test

www.QinetiQ.com

Vision

Navigation grade components for small autonomous vehicles

- Ultra compact IMU with 6 degrees of freedom inertial
 - Optional 3 axis magnetometer/gradiometer
- Small volume
 - Target 1cm³
- Additional virtues
 - High fidelity
 - Low mass
 - Low power
 - Robust
 - Reliable

02 Technology

www.QinetiQ.com

SOI High Aspect Ratio Micromachining

DRIE-based (CMOS compatible)

Double-sided DRIE option

Pattern mask

Deep dry etch to buried layer (optional back etch)

Remove sacrificial layer

Gyroscope

Resonator

QinetiQ

www.QinetiQ.com

Wafer level packaging

- Metal seal bonding techniques for full hermetic/ vacuum encapsulation
- Low temperature photosensitive polymer bonding techniques
- Anodic bonding used for 3-D assembly

Capping wafer

Wafers bonded together

Wire bond through cap wafer

Multi wafer stack including SOI, Si and glass wafers

QinetiQ

www.QinetiQ.com

03 Inertial Components

www.QinetiQ.com

Accelerometers

Single axis lateral device

- Capacitive pickoff
- Wide range of full scale options
 - 4'g' 1000's 'g'
- Bias stabilities of <1mg achievable
- Ceramic package
 - One with integrated ASIC, decoupling and interconnect
- Wafer level packaging currently being assessed

www.QinetiQ.com

Gyroscopes

Ring resonator

- Angular rotation couples Cos 20 and Sin 20 modes
- Currently open loop and uncompensated
 - 100 deg/hr performance
- High precision etch process
 - Very small mode split <few Hz
 - No need for laser trimming
- Various extra outputs allow signal processing to compensate
 - Ring frequency, primary amplitude
 - Target improvement to <1deg/hr

QinetiQ

www.QinetiQ.com

Magnetometers

Resonant mechanical device based on Lorentz force

- Current flowing through a wire exerts a force in the presence of a magnetic field
 - Very small effect 1mA,1000um,100nT gives 100fN force
- High Q resonant system amplifies small forces to large amplitude movements at the resonant frequency
 - Pass an alternating current down the beam at the resonant frequency

www.QinetiQ.com

Magnetometer

- Resonant frequency ≈5kHz •
- Package pressure ≈1mbarr ٠
- Currently 10-20nT/√Hz •
 - Sufficient for 0.05 deg in earth field for 1second integration

Magnetometer standardised so 0mT = 0V output

Magnetic field / uT

www.QinetiQ.com

Gradiometer

Extend the length of the magnetometer and add a second current path

- The two current paths are driven in opposite directions to give a balanced force with a uniform field
 - No output in uniform field, output when there is a gradient
- Target of 1-5nT/ √Hz
- Successful fabrication of structures in excess of 16mm baseline
 - 10mm baseline likely for practical device

www.QinetiQ.com

04 IMU scaling

www.QinetiQ.com

IMU Scaling

3" (75mm) cube - COTS electronics

1" (25mm) cube – ASIC electronics

10mm cube – multi component MEMS chip, chip scale packaging, ASIC electronics

www.QinetiQ.com

Multi component chip

Accelerometer, gyro, magnetometer fabricated on the same chip.

Common chip level vacuum package <1mbar

05 Conclusions

www.QinetiQ.com

Related programs

Physics of failure

- Various collaborative programmes
 - Europe, US

Space radiation testing

Space department Farnborough

Conclusions

Individual components demonstrated

• Desired performance achievable

Single chip multi component designed and fabricated

- Novel assembly with electronics and testing to be completed
- With suitable funding first prototypes could be available in 2-3 years

Acknowledgements

Work presented mostly funded by UK MoD RAO, DEC DTA and DEC GM

www.QinetiQ.com

The Global Defence and Security Experts

www.QinetiQ.com