6th ESA Round Table on Micro & Nano Technologies for Space Applications

Hollow Waveguide Optical PCB Technology for Micro-Optical Sensors

R Mike Jenkins, Mark E McNie, Ewan D Finlayson, Brian J Perrett and Rhodri R Davies Optronics Division, QinetiQ Ltd.

Thanks to: Kotska Wallace, Benedikt Guldimann and Bernhard Furch ESTEC

11th October 2007

rmjenkins@qinetiq.com

www.QinetiQ.com

ESA's interests in relation to space instrumentation

• Optical and laser based systems play an increasingly important role in space missions. In such missions, key requirements are:

- small size
- low mass
- robustness to optical misalignment
- good optical efficiency
- low cost
- An optical PCB concept could fulfil these requirements

rmjenkins@qinetiq.com

The hollow waveguide optical PCB concept

rmjenkins@qinetiq.com

© Copyright QinetiQ limited 2007

Advantages of hollow waveguide optical PCB concept

- Provides a fundamentally new approach to the manufacture of micro-optical systems
 - Inherently compact, rugged (optically robust) and low mass
 - Easy integration of any required discrete component
 - Easier angular alignment tolerances result in excellent optical performance
 - Optical guidance means small beam widths allowing increased packing density compared with free-space systems
 - The hollow core waveguides facilitate very broad waveband, high power transmission characteristics compared with solid core guides
 - Considerable potential for low cost mass manufacture

rmjenkins@qinetiq.com

www.QinetiQ.com

Hollow waveguide mode theory

far field

$$T_{pq_{dB}} = -4.35 \frac{\lambda^2}{w^3} \left[p^2 Re\left(\frac{1}{\{(n-ik)^2 - 1\}^{1/2}}\right) + q^2 Re\left(\frac{(n-ik)^2}{\{(n-ik)^2 - 1\}^{1/2}}\right) \right]$$

rmjenkins@qinetiq.com

www.QinetiQ.com

The hollow waveguide optical PCB concept

rmjenkins@qinetiq.com

© Copyright QinetiQ limited 2007

Definition of alignment criteria

angular alignment criteria

$$\theta \leq \frac{\lambda}{5w}$$

equates to EH_{11} coupling ≥ 0.95

lateral alignment criteria

$$\chi \le \frac{w}{15}$$

equates to EH_{11} coupling ≥ 0.95

rmjenkins@qinetiq.com

Angular and lateral alignment tolerances versus guide width

rmjenkins@qinetiq.com

www.QinetiQ.com

Attenuation and power handling versus guide width

rmjenkins@qinetiq.com

www.QinetiQ.com

QinetiQ Malvern MEMS processing facility

Leading European provider of custom military & commercial MEMS solutions

- Experienced, integrated team of 50 staff
- Key Capabilities
- MEMS design and modelling
- CMOS Electronic design (PCB / MCM / ASIC)
- Microsystems with embedded processing
- Microstructure fabrication (ISO9001) Advanced characterisation and test

rmjenkins@qinetiq.com

Hollow silicon waveguides for 1.55 μ m micro-optical systems

DRIE Passivation & Etch Cycle

rmjenkins@qinetiq.com

© Copyright QinetiQ limited 2007

11-element 90° fold array based on precision alignment slots

Optical PCB test structure with eleven 2 x 2 x 0.5 mm integrated fully reflecting fold mirrors in conjunction with 125 μ m wide hollow guides for assessing alignment reproducibility

rmjenkins@qinetiq.com

www.QinetiQ.com

	THE REAL PROPERTY OF THE PARTY	CONTRACTOR OF
old 1 <u>near field</u>	<u> </u>	0
old 2	(0) Kr (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	0
old 3		
old 4	()	
old 5	0	ं
old 6	 An and a second s	0
old 7		۲
old 8	0 KULUU	0
old 9	0 12.12.0	0
old 10	0 Kr 42 Kr 4	
old 11	Ru+12134-4	6

rmjenkins@qinetiq.com

© Copyright QinetiQ limited 2007

Measurements of attenuation as a function of overall guide length

rmjenkins@qinetiq.com

www.QinetiQ.com

Hollow silicon waveguide Michelson interferometer

fully reflecting mirror on PZT

rmjenkins@qinetiq.com

© Copyright QinetiQ limited 2007

Demonstration of hollow silicon waveguide Michelson interferometer

rmjenkins@qinetiq.com

© Copyright QinetiQ limited 2007

Characteristics of Michelson interferometer test structure

rmjenkins@qinetiq.com

www.QinetiQ.com

Hybrid integration of discrete components

rmjenkins@qinetiq.com

www.QinetiQ.com

Monolithic integration of MEMS components

- Monolithic
 - Moveable mirrors
 - Phase shifters
 - Beam steering
 - VOA / Switch
 - Shutter-based
- Hybrid
 - Moveable Mirrors
 - Tuneable Filters
 - VOA / Switch
 - etc.

MEMS mirror phase shifter

VOA based on shutter in guide

rmjenkins@qinetiq.com

Demonstration of multimode interference (MMI) splitters

QinetiQ

Proposed HWG 1.55 µm coherent lidar demonstrator

Summary of hollow silicon waveguide optical PCB integration technology

- Ease integration of discrete components no optical interface to bridge
- Broad waveband high power transmission characteristics
- No beam diffraction small/fixed beam diameter
- Easier angular alignment tolerances c.f. free-space
- Easier lateral alignment tolerances c.f. solid-core guides
- Predicted attenuation coefficients < 0.01 dB/cm</p>
- Integrated 45° fold mirrors provide good fundamental mode propagation fidelity in practice
- Hollow waveguide Michelson interferometer demonstrated in practice
- With some further development the concept appears set to provide us with compact, low mass, rugged, low cost micro-optical systems

rmjenkins@qinetiq.com

www.QinetiQ.com