Application of Nanomaterials for Thermal Dissipation

S. Flórez, I. Garmendia, H. Vallejo, C. Jiménez, E. Alberdi, R. Rodríguez

6th ESA Round Table on Micro & Nano Technologies for Space Applications

ESA/ESTEC, Noordwijk The Netherlands

inasmet

11 October 2007

micro&nanotechnologies for Space applications. 8-12 October 2007

Outline

Introduction

inasme

•Objective

- •Modelling. FEM analysis
- •Experimental
- •Influence of manufacturing process on final properties
- •Conclusions

micro&nanotechnologies for Space applications. 8-12 October 2007

Introduction

- / High temperatures in electronic components
- Heat evacuated through conduction towards radiator(s)
- Good conductivity needed all the way. Adhesive's conductivity is critical

The aim of the THERDISS project (supported by ESA) is to conduct **research in nanocomposites** to be used **to dope adhesives for space conditions**. Thus, it is expected that the finally selected nanocomposite can **multiply at least by a factor of 3 the thermal conductivity of a standard epoxy solution**.

micro&nanotechnologies for Space applications. 8-12 October 2007

Methodology

MODELLING

inasmet

How much nanomaterial is needed to reach K_{objective}

EXPERIMENTAL

Real mix of nanomaterials and adhesive. Measurements.

✓ Commercial **non conductive** Hysol EA epoxy adhesive. K=0,2W/mk

•Commercial **conductive** epoxy adhesive. K=2W/mk

micro&nanotechnologies for Space applications. 8-12 October 2007

Modelling. Finite Element Methods

inasme

- Mesh the model with commercial software
 - > Take into account the nano-material length
- 2. Export the mesh topology to an ASCII file
- 3. Add randomly the nanoparticles to the original mesh trough THERDISS in house developed software
 - > According to the weight percentage
 - > According to the properties of the nanomaterials
- 4. Establish the boundary conditions trough THERDISS
 - Surface temperatures
- 5. Solve the case with commercial software
 - > The program calculates the heat flow q
- 6. Calculate the equivalent thermal conductivity by,

$$q = K_{eq} \cdot \frac{A}{d} \cdot \Delta T \rightarrow K_{eq} = \frac{q}{\Delta T} \cdot \frac{d}{A}$$

micro&nanotechnologies for Space applications. 8-12 October 2007

Materials

NANOMATERIALS

inasmet

ТҮРЕ	Ø (m)	L (m)	K (W/mK)	ρ (kg/m³)	Th. (m)
CNF	1.00E-07	1.00E-04 5.00E-05	1200	2100	-
MWNT	2.00E-08	4.00E-05 5.00E-07	3000	1350	-
SWNT	1.20E-09	4.00E-05 5.00E-07	1750 – 5800 3775 (mean)	1350	-
BUCKYPAPER	1.50E-08	2.00E-05 5.00E-06	1200	500	1.00E-4 5.00E-5

ADHESIVE		
MATERIAL	K (W/mK)	ρ (kg/m³)
HYSOL EA 9396	0.21	1150

micro&nanotechnologies for Space applications. 8-12 October 2007

Finite Element Models

inasmet

FEM 01 and FEM 02

	FEM 01	FEM 02
NANOMATERIAL	CNF	
DIAMETER (m)	100.E-9	
LENGTH (m)	100.E-6	50.E-6
W. PERCENTAGE (%)	0.1	÷ 50

SCALED MODEL	NO
SCALE	-
FEM DIMENSIONS (mm)	2 x 2 x 0.1

FEM 03 and FEM 04

	FEM 03	FEM 04
NANOMATERIAL	MWNT	
DIAMETER (m)	20.E-9	
LENGTH (m)	40.E-6 500.E-	
W. PERCENTAGE (%)	0.1 ÷ 50	

SCALED MODEL	NO	YES
SCALE	-	1000 / 1
FEM DIMENSIONS (mm)	2 x 2 x 0.1	20 x 20 x 100

micro&nanotechnologies for Space applications. 8-12 October 2007

Finite Element Models

inasmet

FEM 05 and FEM 06

	FEM 05	FEM 06
NANOMATERIAL	SWNT	
DIAMETER (m)	1.2.E-9	
LENGTH (m)	40.E-6	500.E-9
W. PERCENTAGE (%)	0.1	÷ 50

SCALED MODEL	NO	YES
SCALE	-	1000 / 1
FEM DIMENSIONS (mm)	2 x 2 x 0.1	20 x 20 x 100

FEM 07 and FEM 08

	FEM 07	FEM 08
NANOMATERIAL	BP	
DIAMETER (m)	15.E-9	
LENGTH (m)	20.E-6	5.E-6
W. PERCENTAGE (%)	19.79 ÷ 36.33	

SCALED MODEL	NO	YES
SCALE	-	1000 / 1
FEM DIMENSIONS (mm)	2 x 2 x 0.1	200x200x100

micro&nanotechnologies for Space applications. 8-12 October 2007

Results for fibrous shaped nanomaterials

inasmet)

tecnalia

micro&nanotechnologies for Space applications. 8-12 October 2007

Nanomaterials

inasmet)

tecnalia

CNF

Dispersion	SWNT <	MWNT <	CNF
Thermal properties	~	~	~
Prize	SWNT>	MWNT>	CNF

Simulation: Ideal conditions

$$\frac{K_{adhesive}}{MK} = 0.21 \frac{W}{MK} + 2.5 \text{ wt\% CNF} \longrightarrow \frac{K_{objective}}{K_{objective}} = 6 \div 10 \frac{W}{MK}$$

micro&nanotechnologies for Space applications. 8-12 October 2007

Work Methodology

inasmet

micro&nanotechnologies for Space applications. 8-12 October 2007

Nanoadhesive Morphology

CNF distribution into the polymeric matrix

micro&nanotechnologies for Space applications. 8-12 October 2007

Thermal Conductivity Results

tecnalia

inasmet **7**

6th ESA Round table on micro&nanotechnologies for Space applications. 8-12 October 2007

INFLUENCE OF LACK OF DISPERSION, AIR PRESENCE AND NO CONTACT

micro&nanotechnologies for Space applications. 8-12 October 2007

Influence of air presence on the thermal conductivity

inasmet **7**

tecnalia

SOLVIA-PRE 03

INASMET, SAN SEBASTIAN

October of 2007

2007-09-25 16:48

micro&nanotechnologies for Space applications. 8-12 October 2007

Influence of lack of dispersion on the thermal conductivity

inasmet

micro&nanotechnologies for Space applications. 8-12 October 2007

Influence of no contact on the thermal conductivity

NO CONTACT BETWEEN THE NANOELEMENTS AND THE ELECTRONIC COMPONENT

inasmet

micro&nanotechnologies for Space applications. 8-12 October 2007

Influence of the no contact on the thermal conductivity

NO CONTACT BETWEEN THE NANOELEMENTS

tecnalia

inasmet

micro&nanotechnologies for Space applications. 8-12 October 2007

Strategies to improve thermal conductivity. Synergic effect

Boron nitride + fibrous nanomaterials (CNF)

inasmet

$$K_{Boron\ nitride} = 600 \, \frac{W}{mK}$$

EPOXY+BORON NITRIDE

EPOXY+CNF + BN

micro&nanotechnologies for Space applications. 8-12 October 2007

Conclusions

inasme

- A methodology has been establish to predict K for doped adhesives and a FEM program has been written.
- 2. In the fibrous shaped nanomaterials (CNF, MWNT and SWNT), the efficiency depends mainly on the orientation of the nanoparticles, as well as the thermal conductivity of the nanomaterials.
- 3. Good CNF dispersion into the polymeric matrix was achieved using the three roller mill device.
- 4. Thermal conductivity increases to 0.5 W/mk using 2.5 wt% of CNF. This result is in concordance with the simulation in which the main condition is that no contact between the nanoelements takes place.
- 5. Adding boron nitride the contact among conductive elements was increased (SEM images), therefore the thermal conductivity could be increased.
- 6. New and promising results are being obtained that assure succesful final for the project

6th ESA Round table on micro&nanotechnologies for Space applications. 8-12 October 2007

Thanks for your attention!

