

Enabling of high Q Micromachined Planar Filter Components Part I

ESA GSTP- 4 Program:

ESTEC Contract No. 19621 / 06 / NL /PA

Dr. Wolfgang Tschanun MBA, RMT

www.reinhardt-microtech.ch

roelectronics

mic

for

technology

thin film

- introduction + basics

Introduction (I / VI)

Basic Project's requests:

- Transform an academic design / process flow into an industrial whole wafer process
- including packaging of the devices wafer level
 - show first environmental tests

Introduction (II / VII)

basics I

The incoupled EM – wave passes the λ / 2 designed electrode structure and comes to resonate at the selected frequencies.

To increase the Q – figure the wave is enclosed at an Au coated cavity.

Introduction (III / VII)

basics II

Q – figures up to 600 can be realised

microelectronics į technology E L. th

Introduction (IV/ VII)

Strucuring for both sides	
Opening of SiO2 for Si etch	
BCB - Coating	
BCB - Metallisation	
Structuring of BCB - Metallisation	
Si deep etching	

 Transform an academic design / process flow into an industrial whole wafer process

Introduction (V / VII)

including packaging of the devices

microelectronics for technology E Ē th

Introduction (VI / VII)

show first environmental tests

-

Introduction (VII / VII)

show first environmental tests

microelectronics for technology E Ē thi

of part I

introduction and basics

Enabling of high Q Micromachined Planar Filter Components Part II

ESA GSTP- 4 Program:

ESTEC Contract No. 19621 / 06 / NL /PA

Dr. Wolfgang Tschanun MBA, RMT

www.reinhardt-microtech.ch

Content (part II of final presentation)

- specification
- theory and design
- device overview
- processes on wafer level
- development of packaging design
- processes for packaging
- realised filters measurements
- outlook

5

Specifications

Technical specification:

down - converter filter at K_a - band

f₀ = 19.825 GHz

Initial bandwidth ~ 0.75 GHz

min. loss at $f_0 \sim -3$ dB etc.

given: electrode and device layout

5

Theory and Design (I)

Theory:

was covered throughout the project by Xlim:

- basic layout (pre given, not altered)
- failure budgets (tolerances)
- design checks
- practical proof of new packaging design

Theory and Design (II)

Design:

changed to practical waver level stacking

Theory and Design (III)

Design:

changed to practical waver level stacking

Device overview I

The devices are built up out of 3 stacked wafers X –ray picture:

- 1. microstrip Line (waveguiding part)
- 2. RF input output
- 3. BCB membrane
- 4. conducting adhesive

Device overview II

The devices are built up out of 3 stacked wafers forming a resonating cavity:

- 1. microstrip Line (waveguiding part)
- 2. ground metallisation top wafer
- 3. BCB membrane
- 4. cavity divided by BCB membrane
- 5. ground metallisation bottom wafer
- 6. area for electromagnetic shielding
- 7. high ohmic Si

Incoming inspection Cleaning Metallisation both sides Lithography both sides Si - etch

Wafer Processes I

Process follow up for Bottom wafer (I):

- cleaning
- metallisation (both sides)
- lithography (both sides)
- Si etch

Wafer Processes II

Wafer level control steps

go to under fill process

Process follow up for

Bottom wafer (II):

- 2nd metallisation

- electroplating (top 8.5;

slope 7, bottom 6.7 µm Au)

Wafer Processes III

Middle wafer key processes:

- BCB Processing
- Si etch simultaneously
- handling of thinned wafers

Wafer Processes IV

Top wafer:

prepared for underfill

5

Development of the Packaging Design I

initial design:

manual gluing of

3 parts

- complicated single alignment
- cumbersome handling

Development of the Packaging Design I

new design considerations:

- partially etched openings
- a single wafer alignment system

microelectronic for technology E th

5

Ü roelectron 0 Ε 0 ND echnolo Ε C ţ

5

Processes Packaging I

Complete Underfill Process:

by selecting proper process parameters a well defined flow of underfill can be achieved

complete / non - complete fill of device edges

realised filter

- device picture

realised filter (I / IV)

- RF – Measurements I (overview)

2 golden samples

realised filter (II / IV)

- RF – Measurements II (detail)

2 golden samples; enlargement

compare theory and practical measurements

5

realised filter (III / IV)

- RF – Measurements temperature dependant

realised filter (IV / IV)

- RF – Measurements temperature dependant

E 0604 enlargement S₁₁ + S₂₁, 3 temperatures

ເກ

Outlook I

The success story of this project was guided by:

- good theoretical investigations
- step by step development of packaging
- mutual help of all project partners

5

Outlook II

The success story of this project was guided by (non technical view)

- a personal frictionless working together
- a successful teamwork
- resulting in sound friendship

roelectronics mici for technology E ij thi

