Study of RADFET Sensitivity – Dependency on Proton Energy

D/TOS-QCA Final Presentation Day ESA/ESTEC, Noordwijk, 11/05/2004

Aleksandar Jaksic, Research Scientist Devices and Systems for Dosimetry Transducers Group, NMRC, Ireland

D/TOS-QCA Final Presentation Day, ESTEC, Noordwijk, 11/05/2004

Outline:

- Where do I come from?
- What is RADFET and how does it work?
- Last ESA sponsored RADFET contract (overview)
- RADFET pre-irradiation characterisation
- Co-60 irradiation results
- Proton irradiation results
- Electron and X-ray irradiation results
- Future work

Where do I come from?

Ireland

Cork

NMRC

D/TOS-QCA Final Presentation Day, ESTEC, Noordwijk, 11/05/2004

RADFET operating principle:

- Radiation creates electron-hole pairs
- Initial recombination of electrons and holes happens
- Non-recombined electrons leave the oxide; holes are trapped in the vicinity of the oxide/silicon interface
- RADFET threshold voltage (V_T) changes ($\Delta V_T \sim Dose$)

RADFET biasing configurations:

- <u>Irradiation (sense mode)</u>: zero current; (B, S and D grounded); G can be:
 - Grounded (V_{IRR}=V_{GS}=0V)
 - Biased (typically $V_{IRR}=V_{GS}>0$)

<u>Read-out mode:</u> specified current applied to S=B; G=D grounded

Irradiation (sense mode) and <u>Read-out mode</u> are the same

D/TOS-QCA Final Presentation Day, ESTEC, Noordwijk, 11/05/2004

RADFET advantages over other dosimeters:

- Immediate read-out without destroying the data
- Extremely small sensor chip
- Very low or zero power consumption
- Technology suitable for connection to a microprocessor
- Low cost (especially of a reader device)

Applications:

- Nuclear industry and research
- Space dosimetry
- Radiotherapy
- Personal dosimetry [?]

Last ESA sponsored RADFET contract:

- Part of the ESTEC Frame Contract with NMRC
- Contract No.:10582/93/NL/PB; COO No.: 46
- Start date: May 2002
- Duration: one year
- Description of work (work-packages):
 - Pre-irradiation and Co-60 characterisation
 - Passivation layer introduction
 - Energetic particle response

ESAPMOS4 RADFET chip:

- Chip size: 1mm x 1mm
- Contains four RADFETs:
 - two 300/50 devices
 - two 690/15 devices
- Chip types (gate oxide):
 - 100 nm
 - 400 nm
 - 400 nm Implanted (IMPL)
 - 1 μm
 - 1 μm Implanted (IMPL)

2400 SourceMeter system:

Passivated vs. unpassivated RADFETs:

Device type	V _{T(RC)} @ 10 m [V]	V _{T(EX)} [V]	b [~ 10 ⁻⁶ A/V ²]	SS [mV/decade]
300/50 standard	-1.524 ± 0.124	0.193 ± 0.111	6.947 ± 0.127	263 ± 8
300/50 passivated	-1.630 ± 0.097	0.092 ± 0.105	6.986 ± 0.167	254 ± 9
690/15 standard	-0.201 ± 0.084	0.293 ± 0.072	75.370 ± 1.288	228 ± 5
690/15 passivated	-0.330 ± 0.067	0.148 ± 0.064	78.130 ± 1.956	225 ± 6

Co-60 irradiation (400nm IMPL):

Co-60 irradiation (400nm UNIMPL):

400nm IMPL annealing (HDR):

400nm IMPL annealing (LDR):

400nm IMPL annealing (HDR vs. LDR):

Co-60 irradiation (400nm IMPL, manual):

Co-60 irradiation (400nm IMPL, manual):

Co-60 irradiation (400nm IMPL, manual):

Co-60 irradiation (conclusions):

- Higher sensitivity for 400nm IMPL then UNIMPL
- Response increased with increase in irrad. bias
- Dose rate effect observed for positive V_{IRR}
- No apparent dose rate effect for other configurations
- Dose rate effect is a consequence of different rates of formation of oxide trapped charge and interface traps at different dose rates

Proton irradiations:

Proton energy dependence:

Proton energy dependence (normalised):

Proton irradiation (annealing):

Proton irradiation (conclusions):

- Small variations in data
- Response increased with increase in irrad. bias
- Response increased with proton energy (max by 35%)
- Lid effect present (except for the lowest proton energy)

Electron irradiation campaign (Co-60):

Electron irradiation campaign (8MeV electrons):

Electron irradiation campaign (8MeV X-rays):

Normalised energy response (positive V_{IRR}):

D/TOS-QCA Final Presentation Day, ESTEC, Noordwijk, 11/05/2004

Normalised energy response (zero V_{IRR}):

Electron irradiation campaign (conclusions):

- Small variations in data
- Response increased with increase in irrad. bias
- Energy response flat from 1-8 MeV
- Passivated devices give slightly higher response
- No significant dependence of response on device geometry

Summary of 2004/2005 proposal:

- New BIOPAN board
 - BIOPAN board design
 - BIOPAN board fabrication
 - BIOPAN board tests electrical, environmental, irradiation
- RADFET characterisation in various radiation environments
 - RADFET fabrication and test
 - Diode on chip characterisation
 - Co-60 radiation characterisation
 - Proton radiation characterisation
- Improved RADFET Reader Board System
 - RADFET Reader Board design
 - RADFET Reader Board fabrication and test
 - Application software design and test